Skip to main content
Log in

Dual Retention Mechanism in Two-Dimensional LC Separations of Barbiturates, Sulfonamides, Nucleic Bases and Nucleosides on Polymethacrylate Zwitterionic Monolithic Micro-Columns

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In-house prepared zwitterionic polymethacrylate micro-columns using in situ polymerization of N,N-dimethyl-N-metacryloxyethyl-N-(3-sulfopropyl) ammonium betaine (MEDSA) functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) cross-linker provided excellent stability and reproducibility of preparation and separation efficiency of 60,000–70,000 theoretical plates m−1 for small molecules under isocratic conditions. The column showed a dual retention mechanism, reversed-phase (RP) in highly aqueous mobile phases and aqueous normal-phase (HILIC) in acetonitrile-rich mobile phases. This property can be used to obtain complementary separation and combined information on the sample from repeated injections of a sample on a single column, in different mobile phases characteristic for the HILIC and for the RP modes, which is in fact a form of offline two-dimensional chromatography on a single column. The dual retention mechanism has been observed with a variety of columns, however, often with impractically narrow retention range in one of the two modes. To take full advantage from the combined single-column RP–HILIC experiments, the column should provide a sufficiently broad mobile phase interval both in the RP and in the HILIC mode. The BIGDMA-MEDSA micro-columns proved suitable earlier for the combined RP–HILIC separations of some phenolic compounds and flavonoids. In the present work, we investigated the effects of the mobile phase composition on the retention of a variety of polar compounds over full retention range of buffered aqueous acetonitrile mobile phases, to find potentially useful HILIC and RP retention ranges for barbiturates, sulfonamides, nucleosides and nucleic bases. In the HILIC mode, proton donor–acceptor interactions show a major effect on retention and selectivity of separation, whereas the size of the non-polar hydrocarbon part of the sample molecule is the most important factor in the water-rich mobile phases. The sample structure strongly affects the composition of aqueous–organic mobile phases at which the transition between the two retention modes occurs. Of the investigated sample types, barbiturates show better separation under reversed-phase conditions, whereas nucleosides and nucleic bases in the HILIC mode. Aromatic carboxylic acids and sulfonamides can be separated either in the reversed phase or under HILIC conditions, the two separation modes showing complementary selectivity of separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hjertén S, Liao J, Zhang R (1989) J Chromatogr 473:273–275

    Article  Google Scholar 

  2. Svec F, Fréchet J (1992) Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  3. Svec F (2004) J Sep Sci 27:747–766

    Article  CAS  Google Scholar 

  4. Svec F (2010) J Chromatogr A 1217:902–924

    Article  CAS  Google Scholar 

  5. Urban J, Svec F, Fréchet JMJ (2010) J Chromatogr A 1217:8212–8221

    Article  CAS  Google Scholar 

  6. Nischang I, Teasdale I, Bruggemann O (2010) J Chromatogr A 1217:7514–7522

    Article  CAS  Google Scholar 

  7. Svec F (2012) J Chromatogr A 1228:250–262

    Article  CAS  Google Scholar 

  8. Nischang I, Teasdale I, Bruggemann O (2011) Anal Bioanal Chem 400:2289–2304

    Article  CAS  Google Scholar 

  9. Urban J, Jandera P (2013) Anal Bioanal Chem 405:2123–2131

    Article  CAS  Google Scholar 

  10. Currivan S, Jandera P (2014) Chromatography 1:24–53

    Article  Google Scholar 

  11. Alpert AJ (1990) J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  12. Jandera P (2011) Anal Chim Acta 692:1–25

    Article  CAS  Google Scholar 

  13. Moravcová D, Planeta J, Kahle V, Roth M (2012) J Chromatogr A 1270:178–185

    Article  Google Scholar 

  14. Buszewski B, Noga S (2012) Anal Bioanal Chem 402:231–247

    Article  CAS  Google Scholar 

  15. Foo HC, Heaton J, Smith NW, Stanley S (2012) Talanta 100:344–348

    Article  CAS  Google Scholar 

  16. Viklund C, Irgum K (2000) Macromolecules 33:2539–2544

    Article  CAS  Google Scholar 

  17. Vicklund C, Sjorgen A, Irgum K, Nes I (2001) Anal Chem 73:444–452

    Article  Google Scholar 

  18. Jiang Z, Smith NW, Ferguson PD, Taylor MR (2007) Anal Chem 79:1243–1250

    Article  CAS  Google Scholar 

  19. Yuan GX, Peng YB, Liu ZH, Hong JY, Xiao Y, Guo JL, Smith NW, Crommen J, Jiang ZJ (2013) J Chromatogr A 1301:88–97

    Article  CAS  Google Scholar 

  20. Liu C, Chen W, Yuan G, Xiao Y, Crommen J, Xu S, Jiang Z (2014) J Chromatogr A 1373:73–80

    Article  CAS  Google Scholar 

  21. Staňková M, Jandera P, Škeříková V, Urban J (2013) J Chromatogr A 1289:47–57

    Article  Google Scholar 

  22. Jandera P, Staňková M (2015) Chromatographia 79:853–859

    Article  Google Scholar 

  23. Jandera P (2008) J Sep Sci 31:1421–1437

    Article  CAS  Google Scholar 

  24. Urban J, Škeříková V, Jandera P, Kubíčková R, Pospíšilová M (2009) J Sep Sci 32:2530–2543

    Article  CAS  Google Scholar 

  25. Lin H, Ou J, Zhang Z, Dong J, Wu M, Zou H (2012) Anal Chem 84:2721–2728

    Article  CAS  Google Scholar 

  26. Jandera P, Staňková M, Hájek T (2013) J Sep Sci 36:2430–2440

    Article  CAS  Google Scholar 

  27. Jin G, Guo Z, Zhang F, Xue X, Jin Y, Liang X (2008) Talanta 76:522–527

    Article  CAS  Google Scholar 

  28. Hájek T, Jandera P, Staňková M, Česla P (2016) J Chromatogr A 1446:91–102

    Article  Google Scholar 

  29. Summa S, Lo Magro S, Armentano A, Muscarella M (2015) Food Chem 187:477–484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Jandera.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staňková, M., Jandera, P. Dual Retention Mechanism in Two-Dimensional LC Separations of Barbiturates, Sulfonamides, Nucleic Bases and Nucleosides on Polymethacrylate Zwitterionic Monolithic Micro-Columns. Chromatographia 79, 657–666 (2016). https://doi.org/10.1007/s10337-016-3094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3094-0

Keywords

Navigation