Skip to main content
Log in

Use of Cupriavidus basilensis-aided bioabatement to enhance fermentation of acid-pretreated biomass hydrolysates by Clostridium beijerinckii

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Lignocellulose-derived microbial inhibitors (LDMICs) prevent efficient fermentation of Miscanthus giganteus (MG) hydrolysates to fuels and chemicals. To address this problem, we explored detoxification of pretreated MG biomass by Cupriavidus basilensis ATCC®BAA-699 prior to enzymatic saccharification. We document three key findings from our test of this strategy to alleviate LDMIC-mediated toxicity on Clostridium beijerinckii NCIMB 8052 during fermentation of MG hydrolysates. First, we demonstrate that growth of C. basilensis is possible on furfural, 5-hydroxymethyfurfural, cinnamaldehyde, 4-hydroxybenzaldehyde, syringaldehyde, vanillin, and ferulic, p-coumaric, syringic and vanillic acid, as sole carbon sources. Second, we report that C. basilensis detoxified and metabolized ~98 % LDMICs present in dilute acid-pretreated MG hydrolysates. Last, this bioabatement resulted in significant payoffs during acetone-butanol-ethanol (ABE) fermentation by C. beijerinckii: 70, 50 and 73 % improvement in ABE concentration, yield and productivity, respectively. Together, our results show that biological detoxification of acid-pretreated MG hydrolysates prior to fermentation is feasible and beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 74:25–33

    Article  CAS  Google Scholar 

  2. Zhang Y, Ezeji TC (2014) Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol. J Ind Microbiol Biotechnol 41:1505–1516

    Article  CAS  PubMed  Google Scholar 

  3. Rosillo-Calle F (2012) Food versus fuel: toward a new paradigm—the need for a holistic approach. ISRN Renew Energy 2012:1–15

    Article  Google Scholar 

  4. Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209(2):141–148

    Article  PubMed  Google Scholar 

  5. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624

    Article  PubMed  Google Scholar 

  6. Ezeji TC, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N Biotechnol. 29(3):345–351

    Article  PubMed  Google Scholar 

  8. Ujor V, Agu CV, Gopalan V, Ezeji TC (2014) Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Appl Microbiol Biotechnol 98(14):6511–6521

    Article  CAS  PubMed  Google Scholar 

  9. Ujor V, Agu CV, Gopalan V, Ezeji TC (2015) Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation. Appl Microbiol Biotechnol 99(8):3729–3740

    Article  CAS  PubMed  Google Scholar 

  10. Achyuthan KE, Achyuthan AM, Adams PD, Dirk SM, Harper JC, Simmons BA, Singh AK (2010) Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15(12):8641–8688

    Article  CAS  PubMed  Google Scholar 

  11. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  PubMed  Google Scholar 

  12. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 6:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Bioch Biotech 77–79:91–103

    Article  Google Scholar 

  15. Nichols NN, Dien BS, Guisado GM, López MJ (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121–124:379–390

    Article  PubMed  Google Scholar 

  16. Nichols NN, Sharma LN, Mowery RA, Chambliss CK, van Walsum GP, Diena BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microbial Technol 42:624–630

    Article  CAS  Google Scholar 

  17. Govinda Rajulu MB, Lai LB, Murali TS, Gopalan V, Suryanarayanan TS (2014) Several fungi from fire-prone forests of southern India can utilize furaldehydes. Mycol Prog 13:1049–1056

    Google Scholar 

  18. Cao G, Ximenes E, Nichols NN, Frazer SE, Kim D, Cotta MA, Ladisch M (2015) Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors. Bioresour Technol 190:412–415

    Article  CAS  PubMed  Google Scholar 

  19. Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107(11):4919–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y (2013) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinle P, Stucki G, Stettler R, Hanselmann KW (1998) Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl Environ Microbiol 64(7):2566–2571

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ujor V, Bharathidasan AK, Cornish K, Ezeji TC (2014) Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species. SpringerPlus 3:387

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels. Bioprod Bioref 2012:1–19

    Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  25. Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92:1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective 37(8):1362–1375

  27. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev 9:803–816

    CAS  Google Scholar 

  28. Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genom 11:660

    Article  CAS  Google Scholar 

  29. Alriksson B, Horvath IS, Jonsson LJ (2010) Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Proc Biochem 45:264–271

    Article  CAS  Google Scholar 

  30. Subtil T, Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee J, Lee HJ, Seo J, Kim E, Lee H, Kim P (2014) Artificial oxidative stress-tolerant Corynebacterium glutamicum. AMB Express 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469

    Article  CAS  PubMed  Google Scholar 

  33. Gapes JR (2000) The economics of acetone-butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2(1):27–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Salaries and research support were provided in part by State funds appropriated to the Ohio Plant Biotechnology Consortium by The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Peloton Technologies LLC, and the Hatch grant (Project No. OHO01333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaddeus Chukwuemeka Ezeji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agu, C.V., Ujor, V., Gopalan, V. et al. Use of Cupriavidus basilensis-aided bioabatement to enhance fermentation of acid-pretreated biomass hydrolysates by Clostridium beijerinckii . J Ind Microbiol Biotechnol 43, 1215–1226 (2016). https://doi.org/10.1007/s10295-016-1798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1798-7

Keywords

Navigation