Skip to main content
Log in

Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Fermentation of liquid hot water (LHW) pretreated Miscanthus giganteus (MG) by Clostridium beijerinckii NCIMB 8052 was investigated towards understanding the toxicity of lignocellulose-derived inhibitors to solventogenic Clostridium species vis-à-vis butanol production. While C. beijerinckii NCIMB 8052 did not grow in undiluted MG hydrolysate-based fermentation medium, supplementation of this medium with Calcium carbonate enabled the growth of C. beijerinckii NCIMB 8052 and production of butanol. Using high-performance liquid chromatography (HPLC) and spectrophotometric assays, LHW-pretreated MG was found to contain lignocellulose-derived microbial inhibitory compounds; some of which were transformed by exponentially growing C. beijerinckii to less inhibitory compounds during fermentation. Contrary to all expectations, the reduction product of furfural, furfuryl alcohol, inhibited butanol production by C. beijerinckii by more than 16 %. Collectively, these results provide new insights into why lignocellulosic biomass hydrolysates are recalcitrant to fermentation to biofuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638

    Article  CAS  PubMed  Google Scholar 

  2. Belay N, Boopathy R, Voskuilen G (1997) Anaerobic transformation of furfural by Methanococcus deltae Delta LH. Appl Environ Microbiol 63(5):2092–2094

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Boopathy R (2009) Anaerobic biotransformation of furfural to furfuryl alcohol by a methanogenic archaebacterium. Int Biodeterior Biodegrad 63(8):1070–1072

    Article  CAS  Google Scholar 

  4. Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol 11(3):147–150

    Article  CAS  Google Scholar 

  5. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chamkha M, Garcia JL, Labat M (2001) Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. Int J Syst Evol Microbiol 51:2105–2111

    Article  CAS  PubMed  Google Scholar 

  7. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19(3):220–225

    Article  CAS  Google Scholar 

  8. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469

    Article  CAS  PubMed  Google Scholar 

  9. Frank C, Schwarz U, Matthies C, Drake HL (1998) Metabolism of aromatic aldehydes as cosubstrates by the acetogen Clostridium formicoaceticum. Arch Microbiol 170(6):427–434

    Article  CAS  PubMed  Google Scholar 

  10. Green EM (2011) Fermentative production of butanol–the industrial perspective. Curr Opin Biotechnol 22(3):337–343

    Article  CAS  PubMed  Google Scholar 

  11. Gutiérrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98:327–340

    Article  PubMed  Google Scholar 

  12. Gutiérrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121(2):154–164

    Article  PubMed  Google Scholar 

  13. Hamelinck CN, Faaij APC (2006) Outlook for advanced biofuels. Energy Policy 34(17):3268–3283

    Article  Google Scholar 

  14. Han B, Ujor V, Lai LB, Gopalan V, Ezeji TC (2013) Use of proteomic analysis to elucidate the role of calcium in acetone–butanol–ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 79(1):282–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1998) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22(5):439–458

    Article  CAS  Google Scholar 

  16. Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation-products. Anal Chem 54(2):174–178

    Article  CAS  Google Scholar 

  17. Jiang Y, Xu CM, Dong F, Yang YL, Jiang WH, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291

    Article  CAS  PubMed  Google Scholar 

  18. Kanouni AE, Zerdani I, Zaafa S, Znassni M, Loutfi M, Boudouma M (1998) The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. World J Microbiol Biotechnol 14(3):431–435

    Article  Google Scholar 

  19. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  PubMed  Google Scholar 

  20. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  21. Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, Hoboken, pp 233–259

    Chapter  Google Scholar 

  22. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2(10):26

  23. Ohta K, Hamada S, Nakamura T (1993) Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl Environ Microbiol 59(3):729–733

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Palmqvist E, Almeida JS, Hahn-Hägerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62(4):447–454

    Article  CAS  PubMed  Google Scholar 

  25. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  26. Richmond C, Han B, Ezeji TC (2011) Stimulatory effects of calcium carbonate on butanol production by solventogenic Clostridium species. Cont J Microbiol 5(1):18–28

    Google Scholar 

  27. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Nrel JW (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory

  28. Sørensen A, Teller PJ, Hilstrom T, Ahring BK (2008) Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour Technol 99(14):6602–6607

    Article  PubMed  Google Scholar 

  29. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708

    Article  CAS  PubMed  Google Scholar 

  30. Wierckx N, Koopman F, Bandounas L, de Winde JH, Ruijssenaars HJ (2010) Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microb Biotechnol 3(3):336–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wilkins MR, Widmer WW, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42(12):1614–1619

    Article  CAS  Google Scholar 

  32. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33

    Article  CAS  PubMed  Google Scholar 

  33. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68(5):524–530

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 6(1):66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N Biotechnol 29(3):345–351

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Salaries and research support was provided in part by State funds appropriated to the Ohio Plant Biotechnology Consortium by The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Western Region Sungrant (Prime award No. 2010-38502-21839), and the Hatch grant (Project No. OHO01222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaddeus Chukwuemeka Ezeji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ezeji, T.C. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol. J Ind Microbiol Biotechnol 41, 1505–1516 (2014). https://doi.org/10.1007/s10295-014-1493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1493-5

Keywords

Navigation