Skip to main content
Log in

Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50–100 mM ethanol, biomethanation increased by 50–150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10–20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that “normal” methane production continued to take place, but ethanol led to production of additional methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahring BK, Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl Environ Microbiol 54:2393–2397

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Amani T, Nosrati M, Mousavi SM, Kermanshahi RK (2010) Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. IJEST 8:83–96

    Google Scholar 

  3. Bordeleau ÉL, Droste RL (2011) Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion. Water Sci Technol 63:291–296

    Article  CAS  PubMed  Google Scholar 

  4. Brambilla M, Araldi F, Marchesi M, Bertazzoni B, Zagni M, Navarotto P (2012) Monitoring of the startup phase of one continuous anaerobic digester at pilot scale level. Biomass Bioenergy 36:439–446

    Article  CAS  Google Scholar 

  5. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  6. Busch G (2013) Biogas technology. In: Yang ST, Enshasy HE, Thongchul N (eds) Bioprocessing technologies. Wiley, New York, pp 279–292

    Google Scholar 

  7. Carrez PMC (1908) Le ferrocyanure de potassium et l’acétate de zinc comme agents de défécation des urines. Annales de chimie analytique 13:97–101

    CAS  Google Scholar 

  8. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley, Weinheim

    Book  Google Scholar 

  9. Fachverband Biogas e.V. (2012) Branchenzahlen 2011 und Prognose der Branchenentwicklung 2012/2013. http://www.biogas.org/edcom/webfvb.nsf/id/DE_PM-29-12/$file/12-11-16_Biogas%20Branchenzahlen%202011-2012-2013.pdf Accessed 10 Jul 2014

  10. Frac M, Ziemiñski K (2012) Methane fermentation process for utilization of organic waste. Int Agrophy 26:317–330

    Article  CAS  Google Scholar 

  11. Hagen M, Polman E, Jensen J, Myken A, Jönsson O, Dahl A (2001) Adding gas from biomass to the gas grid. Swedish Gas Center, Malmö

    Google Scholar 

  12. Hahn H, Krautkremer B, Hartmann K (2014) Review of concepts for a demand-driven biogas supply for flexible power generation. Renew Sust Energ Rev 29:383–393

    Article  Google Scholar 

  13. Hashimoto AG (1982) Methane from cattle waste: effect of temperature, hydraulic retention time, and influent substrate concentration on kinetic parameter. Biotechnol Bioeng 14:2039–2052

    Article  Google Scholar 

  14. Hölker U (2013) Eine ständig aktualisierte und erweiterte Beschreibung von über 1.600 Biogasanlagen. http://www.biogaswissen.de. Accessed 10 Jul 2014

  15. Krishania M, Kumar V, Vijay VK (2013) Analysis of different techniques used for improvement of biomethanation process. Fuel 106:1–9

    Article  CAS  Google Scholar 

  16. Krishania M, Kumar V, Vijay VK (2012) Opportunities for improvement of process technology for biomethanation processes. Green process Synt 1:49–59

    CAS  Google Scholar 

  17. Lerm S, Kleyböcker A, Miethling-Graff R, Alawi M, Kasina M, Liebrich M, Würdemann H (2012) Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manag 32:389–399

    Article  CAS  PubMed  Google Scholar 

  18. McInerney MJ and Bryant MP (1981) In: Wise DL (ed) Fuel gas production from biomass. Chemical Rubber Co. Press Inc. West Palm Beach, pp 26–40

  19. McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Morita M, Sasaki K (2012) Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation. Appl Microbiol Biotechnol 94:575–582

    Article  CAS  PubMed  Google Scholar 

  21. Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499

    Article  PubMed  Google Scholar 

  22. Munk B, Bauer C, Gronauer A, Lebuhn M (2012) A metabolic quotient for methanogenic Archaea. Water Sci Technol 66:2311–2317

    Article  CAS  PubMed  Google Scholar 

  23. Munk B, Lebuhn M (2014) Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters. Anaerobe. doi:10.1016/j.anaerobe.2014.04.002

    PubMed  Google Scholar 

  24. Nordmann W (1977) Die Überwachung der Schlammfaulung. Korrespondenz Abwasser 3

  25. Parawira W (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 32:173–186

    Article  Google Scholar 

  26. Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. Brochure of IEA Task 37 “Energy from Biogas and Landfill Gas”

  27. Rajagopal R, Masse D, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641

    Article  CAS  PubMed  Google Scholar 

  28. Refai S, Wassmann K, Deppenmeier U (2014) Short term effect of acetate and ethanol on methane formation in biogas sludge. Appl Microbiol Biotechnol 98:7271–7280

    Article  CAS  PubMed  Google Scholar 

  29. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for Transformation of Biogas to Biomethane. Biomass Bioenergy 35:1633–1645

    Article  CAS  Google Scholar 

  30. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Schmidt JE, Ahring (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 59:2546–2551

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452

    Article  CAS  PubMed  Google Scholar 

  33. Whitlock R (2012) German biogas market slumps in contrast to Europe http://www.renewableenergymagazine.com/

  34. Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstock. Biomass Bioenergy 19:63–102

    Article  CAS  Google Scholar 

  35. Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Joachim Clemens, Nadine Hörter, Stefanie Peters, Thomas Dickhaus and Thomas Fülling from the companies Bioreact GmbH and Bonalytic GmbH for technical support and analysis of physico-chemical parameters. We would also like to thank Elisabeth Schwab, Julia Feldhues and Lisa Nauroth for technical assistance. This work was supported by funds from Bundesministerium für Bildung und Forschung (BMBF, project no. 03SF0421A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Deppenmeier.

Additional information

S. Refai and K. Wassmann authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refai, S., Wassmann, K., van Helmont, S. et al. Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge. J Ind Microbiol Biotechnol 41, 1763–1772 (2014). https://doi.org/10.1007/s10295-014-1524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1524-2

Keywords

Navigation