Skip to main content
Log in

Short-term effect of acetate and ethanol on methane formation in biogas sludge

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT (2014) Development of a highly specific and productive process for n-caproic acid production: applying lessons from methanogenic microbiomes. Water Sci Technol 69:62–68

    Article  CAS  PubMed  Google Scholar 

  • Ahring BK, Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl Environ Microbiol 54:2393–2397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker HA (1940) Studies upon the methane fermentation. IV. The isolation and culture of Methanobacterium omelianskii. Antonie Leeuwenhoek 6:201–220

    Article  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Carrez PMC (1908) Le ferrocyanure de potassium et l'acétate de zinc comme agents de défécation des urines. Annales de chimie analytique 13:97–101

    CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Fachverband Biogas e.V. (2012) Branchenzahlen 2011 und Prognose der Branchenentwicklung 2012/2013. http://www.biogas.org/edcom/webfvb.nsf/id/DE_PM-29-12/$file/12-11-16_Biogas%20Branchenzahlen%202011-2012-2013.pdf

  • Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrog Energy 33:4981–4988

    Article  CAS  Google Scholar 

  • Jain SR, Mattiasson B (1998) Acclimatization of methanogenic consortia for low pH biomethanation process. Biotechnol Lett 20:771–775

    Article  CAS  Google Scholar 

  • Lettinga G, Van Velson AFM, Hobma SW, De Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–724

    Article  CAS  Google Scholar 

  • Lv Z, Leite AF, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2013) Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods. Anaerobe. http://www.sciencedirect.com/science/article/pii/S107599641300190X?via=ihub

  • Maurya MS, Singh L, Sairam M, Alam SI (1994) Production of biogas from night soil: effect of temperature and volatile solids. Indian J Microbiol 34:223–228

    Google Scholar 

  • McEniry J, Allen E, Murphy JD, O’Kiely P (2014) Grass for biogas production: the impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems. Renew Energy 63:524–530

    Article  CAS  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moestedt J, Påledal SN, Anna Schnürer A, Nordell E (2013) Biogas production from thin stillage on an industrial scale—experience and optimisation. Energies 6:5642–5655

    Article  CAS  Google Scholar 

  • Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499

    Article  PubMed  Google Scholar 

  • Nielsen HB, Uellendahl H, Ahring BK (2007) Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31:820–830

    Article  CAS  Google Scholar 

  • Nordmann W (1977) Die Überwachung der Schlammfaulung. Korrespondenz Abwasser 3

  • Nyns EJ (1986) Biomethanation processes. In: Rehm HJ, Reeds G (eds) Biotechnology, vol 8. VCH press, Weinheim, pp 207–268

    Google Scholar 

  • Pindt PF, Angelidaki I, Ahring BK (2003) Dynamics of the anaerobic process: effects of volatile fatty acids. Biotechnol Bioeng 82:791–801

    Article  Google Scholar 

  • Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  CAS  Google Scholar 

  • Sanders FA, Bloodgood DE (1965) The effect of nitrogen to carbon ratios on anaerobic decomposition. J Water Pollut Control Fed 37:1741

    CAS  PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholten JCM, Conrad R (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 66:2934–2942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seitz HJ, Schink B, Conrad R (1988) Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol Lett 55:119–124

    Article  CAS  Google Scholar 

  • Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263

    Article  CAS  Google Scholar 

  • Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek 66:271–294

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Takizawa N, Umetsu K, Takahata H, Hoshiba H (1994) Temperature effects on continuously expending anaerobic digester with dairy manure slurry. Res Bull Obihiro Univ Nat Sci 19:31–36

    Google Scholar 

  • Umetsu K, Takahata H, Kawamoto T (1992) Effect of temperature on mesophilic anaerobic digestion of dairy cow slurry. Res Bull Obihiro Univ 17:401–408

    CAS  Google Scholar 

  • Wilkie A, Colleran E (1986) Pilot scale digestion of pig slurry supernatant using an upflow anaerobic filter. Environ Lett 7:65–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Joachim Clemens, Nadine Hörter, Stefanie Peters, Thomas Dickhaus, and Thomas Fülling from the companies Bioreact GmbH and Bonalytic GmbH, for their technical support and analysis of physicochemical parameters. We would also like to thank Elisabeth Schwab, Stefanie Berger, and Sebastian van Helmont for their technical assistance. This work was supported by funding from Bundesministerium für Bildung und Forschung (BMBF, project no. 03SF0421A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Deppenmeier.

Additional information

Sarah Refai and Kati Wassmann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refai, S., Wassmann, K. & Deppenmeier, U. Short-term effect of acetate and ethanol on methane formation in biogas sludge. Appl Microbiol Biotechnol 98, 7271–7280 (2014). https://doi.org/10.1007/s00253-014-5820-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5820-6

Keywords

Navigation