Skip to main content
Log in

Inheritance and Variation of Genomic DNA Methylation in Diploid and Triploid Pacific Oyster (Crassostrea gigas)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100

    Article  PubMed  CAS  Google Scholar 

  • Blouin MS, Thuillier V, Cooper B, Amarasinghe V, Cluzel L, Araki H, Grunau C (2010) No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss). Can J Fish Aquat Sci 67:217–224

    Article  CAS  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Elango N, Hunt BG, Goodisman MAD, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. PNAS 106:11206–11211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fabioux C, Huvet A, Le Souchu P, Le Pennec M, Pouvreau S (2005) Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250:458–470

    Article  Google Scholar 

  • Finnegan EJ (2002) Epialleles—a source of random variation in times of stress. Curr Opin Plant Biol 5:101–106

    Article  PubMed  CAS  Google Scholar 

  • Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavery MR, Roberts SB (2013) Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ 1:e215

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavery MR, Roberts SB (2014) A context dependent role for DNA methylation in bivalves. Brief Funct Genomics 13:217–222

    Article  PubMed  Google Scholar 

  • Glastad KM, Hunt BG, Yi SV, Goodisman MAD (2014) Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects? Proc Biol Sci 281:20140411

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorelick R (2003) Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biol J Linn Soc 80:353–368

    Article  Google Scholar 

  • Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Li Q, Wang QZ, Kong LF (2012) Genetic mapping and QTL analysis of growth-related traits in the Pacific oyster. Mar Biotechnol 14:218–226

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Hedgecock D (2010) Sex determination: genetic models for oysters. J Hered 101:602–611

    Article  PubMed  Google Scholar 

  • Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876

    Article  PubMed  CAS  Google Scholar 

  • Hunt BG, Brisson JA, Yi SV, Goodisman MAD (2010) Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biol Evol 2:719–728

    PubMed  PubMed Central  Google Scholar 

  • Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159–183

    Article  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Li Q, Yu H, Yu R (2006) Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 259:95–102

    Article  CAS  Google Scholar 

  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    Article  PubMed  PubMed Central  Google Scholar 

  • Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK (2012) Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7:e31901

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  • Marfil CF, Camadro EL, Masuelli RW (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Martin L, Vinas J, Ribas L, Diaz N, Gutierrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Olson CE, Roberts SB (2014a) Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes. Front Phys 5:224

    Article  Google Scholar 

  • Olson CE, Roberts SB (2014b) Indication of family-specific DNA methylation patterns in developing oysters. bioRxiv. doi:10.1101/012831

    Google Scholar 

  • Parisod C, Christin PA (2008) Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytol 178:436–447

    Article  PubMed  Google Scholar 

  • Paun O, Fay MF, Soltis DE, Chase MW (2007) Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 56:649–656

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ (2006) Opinion—inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ (2008) Population epigenetics. Curr Opin Genet Dev 18:221–226

    Article  PubMed  CAS  Google Scholar 

  • Riddle NC, Richards EJ (2005) Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. Plant J 41:524–532

    Article  PubMed  CAS  Google Scholar 

  • Riviere G (2014) Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates. Front Phys 5:129

    Google Scholar 

  • Riviere G, Wu G-C, Fellous A, Goux D, Sourdaine P, Favrel P (2013) DNA methylation is crucial for the early development in the oyster C. gigas. Mar Biotechnol 15:739–753

    Article  PubMed  CAS  Google Scholar 

  • Roberts SB, Gavery MR (2012) Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates? Front Phys 2:116

    Article  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Santerre C, Sourdaine P, Marc N, Mingant C, Robert R, Martinez A-S (2013) Oyster sex determination is influenced by temperature—first clues in spat during first gonadic differentiation and gametogenesis. Comp Biochem Physiol A Mol Integr Physiol 165:61–69

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    Article  PubMed  CAS  Google Scholar 

  • Sarda S, Zeng J, Hunt BG, Yi SV (2012) The evolution of invertebrate gene body methylation. Mol Biol Evol 29:1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Scheid OM, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change of ploidy can modify epigenetic silencing. PNAS 93:7114–7119

    Article  Google Scholar 

  • Scheid OM, Afsar K, Paszkowski J (2003) Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat Genet 34:450–454

    Article  Google Scholar 

  • Suzuki MM, Kerr ARW, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629

    Article  CAS  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010a) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven KJF, Van Dijk PJ, Biere A (2010b) Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol 19:315–324

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Xu C, Maroof MS, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  PubMed  CAS  Google Scholar 

  • Xu ML, Li XQ, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Report 18:361–368

    Article  CAS  Google Scholar 

  • Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B, Zhao Z (2011) Analysis of DNA methylation in various swine tissues. PLoS One 6:e16229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang X, Ho S-M (2011) Epigenetics meets endocrinology. J Mol Endocrinol 46:R11–R32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National High Technology Research and Development Program (2012AA10A405-6), National Natural Science Foundation of China (31372524), and Special Fund for Independent Innovation of Shandong Province (2013CX80202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Li, Q., Yu, H. et al. Inheritance and Variation of Genomic DNA Methylation in Diploid and Triploid Pacific Oyster (Crassostrea gigas). Mar Biotechnol 18, 124–132 (2016). https://doi.org/10.1007/s10126-015-9674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9674-4

Keywords

Navigation