Skip to main content
Log in

Analysis of DNA methylation in tissues and development stages of pearl oyster Pinctada fucata

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

In this study, we developed a methylation-sensitive amplification polymorphism technique to investigate DNA methylation profiles in different tissues and in the early-development stages of the pearl oyster Pinctada fucata (P. fucata). Methylation levels in adductor muscle, digestive gland, axe foot, heart, and gill ranged from 11.71 to 14.71 %, and significant differences (P < 0.05) between methylation levels in different tissues were observed. The DNA methylation levels of sperm, egg cells, two-cell embryos, morula embryos, trochophore larvae and D-shaped larvae were 13.51, 11.80, 12.14, 12.60, 14.65 and 13.18 %, respectively. Development stages of two-cell embryos, morula embryos, trochophore larvae and D-shaped larvae indicated a higher number of identical DNA methylation status loci in the egg, compared to that in the sperm. It is probable that DNA methylation patterns of the progeny are mainly influenced by the egg, while the sperm may become increasingly important during the process of early embryo development. The observed differences in methylation levels in the tissues and the development stages of P. fucata suggest that DNA methylation may act as an epigenetic regulator during tissue differentiation, individual growth, and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baurens FC, Bonnot F, Bienvenu D, Causse S, Legavre T (2003) Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Mol Biol Rep 21:339–348

    Article  CAS  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater J (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  CAS  PubMed  Google Scholar 

  • Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10:20–27

    Article  CAS  PubMed  Google Scholar 

  • Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. BioEssays 21:402–411

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    Article  CAS  PubMed  Google Scholar 

  • Field LM, Blackman RL (2003) Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biol J Linn Soc 79:107–113

    Article  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Biol 49:223–247

    Article  CAS  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10:217–223

    Article  CAS  PubMed  Google Scholar 

  • Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genom 11:483

    Article  Google Scholar 

  • Gavery MR, Roberts SB (2013) Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. Peer J 1:e215

    Article  PubMed Central  PubMed  Google Scholar 

  • He MX, Guan YY, Yuan T, Zhang HY (2008) Realized heritability and response to selection for shell height in the pearl oyster Pinctada fucata (Gould). Aquac Res 39:801–805

    Article  Google Scholar 

  • Hulata G (2001) Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica 111:155–173

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J et al (2013a) Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153:773–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang Q, Li Q, Yu H, Kong LF (2013b) Genetic and epigenetic variation in mass selection populations of Pacific oyster Crassostrea gigas. Genes Genom 35:641–647

    Article  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205

    CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Li A, Song WQ, Chen CB, Zhou YN, Qi LW, Wang CG (2013) DNA methylation status is associated with the formation of heterosis in Larix kaempferi intraspecific hybrids. Mol Breed 31:463–475

    Article  Google Scholar 

  • Liu WG, Huang XD, Lin JS, He MX (2012) Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata. PLoS one 7:e33679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu YL, Rong TZ, Cao MJ (2008) Analysis of DNA methylation in different maize tissues. J Genet Genomics 35:41–48

    Article  PubMed  Google Scholar 

  • Miyazaki T, Goto K, Kobayashi T, Kageyama T, Miyata M (1999) Mass mortalities associated with a virus disease in Japanese pearl oysters Pinctada fucata martensii. Dis Aquat Org 37:1–12

    Article  Google Scholar 

  • Mohandas T, Sparkes R, Shapiro L (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393–396

    Article  CAS  PubMed  Google Scholar 

  • Pontecorvo G, De Felice B, Carfagna M (2000) Novel methylation at GpC dinucleotide in the fish Sparus aurata genome. Mol Biol Rep 27:225–230

    Article  CAS  PubMed  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Reyna-Lopez G, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  • Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P (2013) DNA methylation is crucial for the early development in the oyster C. gigas. Mar Biotechnol 15:739–753

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-García L, Cervera MT, Martínez-Zapater JM (2005) DNA methylation increases throughout Arabidopsis development. Planta 222:301–306

    Article  PubMed  Google Scholar 

  • Sha AH, Lin XH, Huang JB, Zhang DP (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 273:484–490

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MM, Kerr AR, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wada KT, Komaru A (1994) Effect of selection for shell coloration on growth rate and mortality in the Japanese pearl oyster, Pinctada fucata martensii. Aquaculture 125:59–65

    Article  Google Scholar 

  • Wada KT, Komaru A (1996) Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster Pinctada fucata martensii (Dunker). Aquaculture 142:25–32

    Article  Google Scholar 

  • Wang AM, Wang Y, Gu ZF, Li SF, Shi YH, Guo XM (2011) Development of expressed sequence tags from the pearl oyster, Pinctada martensii Dunker. Mar Biotechnol 13:275–283

    Article  CAS  PubMed  Google Scholar 

  • Wu SZ, Guan YY, Huang XD, He MX (2013) Development of 25 novel microsatellite loci and genetic variation analysis in breeding populations of the pearl oyster, Pinctada fucata. J World Aquac Soc 44:600–609

    Article  CAS  Google Scholar 

  • Xiong L, Xu C, Maroof MS, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhang MJ, Niu WP, Yang RJ, Zhang YH, Qiu ZY, Sun BX, Zhao ZH (2011) Analysis of DNA methylation in various swine tissues. PLoS one 6:e16229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu DH, Chu KH (2006) Low genetic differentiation among widely separated populations of the pearl oyster Pinctada fucata as revealed by AFLP. J Exp Mar Biol Ecol 333:140–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Science and Technology Program of China (2012AA10A410), Marine Fishery Science and Technology Promotion Program of Guangdong Province, China (A201201A05, A201301A03).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-xian He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yg., Guan, Yy., Li, Q. et al. Analysis of DNA methylation in tissues and development stages of pearl oyster Pinctada fucata . Genes Genom 37, 263–270 (2015). https://doi.org/10.1007/s13258-014-0246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0246-1

Keywords

Navigation