Skip to main content
Log in

DEM investigations of two-dimensional granular vortex- and anti-vortex-structures during plane strain compression

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The paper presents simulation results of a quasi-static plane strain compression test on cohesionless initially dense sand under constant lateral pressure using a three-dimensional discrete element method. Grains were modelled by means of spheres with contact moments imitating irregular particle shapes. The material behaviour was studied at both global and local levels. The stress–strain and volumetric-strain curves, distribution of void ratio, resultant grain rotation and contact forces were calculated. The main attention was paid to the appearance of plane strain granular micro-structures like vortex and anti-vortex structures in the granular specimen during deformation. In order to detect two-dimensional vortex and anti-vortex structures, a method based on orientation angles of displacement fluctuation vectors of neighbouring single spheres was used. The effect of the method parameters was also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Utter, B., Behringer, R.P.: Self-diffusion in dense granular shear flows. Phys. Rev. E 69(3), 031308-1–031308-12 (2004)

    Article  ADS  Google Scholar 

  2. Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matter 14, 695–705 (2012)

    Article  Google Scholar 

  3. Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotechn. Lett. 2, 113–118 (2012)

    Article  Google Scholar 

  4. Miller, T., Rognon, P., Metzger, B., et al.: Eddy viscosity in dense granular flows. Phys. Rev. Lett. 111(5), 058002 (2013)

    Article  ADS  Google Scholar 

  5. Radjai, F., Roux, S.: Turbulent-like fluctuation in quasi-static flow of granular media. Phys. Rev. Lett. 89, 064302 (2002)

    Article  ADS  Google Scholar 

  6. Williams, J.R., Rege, N.: Coherent vortex structures in deforming granular materials. Mech. Cohes. Frict. Mater. 2, 223–236 (1997)

    Article  Google Scholar 

  7. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31, 407–442 (1999)

    Article  Google Scholar 

  8. Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)

    Article  ADS  Google Scholar 

  9. Tordesillas, A., Muthuswamy, M., Walsh, S.D.C.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134(12), 1095–1113 (2008)

    Article  Google Scholar 

  10. Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J.F., Walizer, L.E.: Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. Int. J. Numer. Anal. Meth. Geomech. 38(12), 1247–1275 (2014)

    Article  Google Scholar 

  11. Tordesillas, A., Pucilowski, S., Lin, Q, Peters, J.F., Behringer, R.P.: Granular vortices: identification, characterization and conditions for the localization of deformation. J. Mech. Phys. Solids (2016). doi:10.1016/j.jmps.2016.02.032

  12. Liu, X., Papon, A., Mühlhaus, H.B.: Numerical study of structural evolution in shear band. Philos. Mag. 92(28–30), 3501–3519 (2012)

    Article  ADS  Google Scholar 

  13. Peters, J.F., Walizer, L.E.: Patterned non-affine motion in granular media. J. Eng. Mech. 139(10), 1479–1490 (2013)

    Article  Google Scholar 

  14. Nitka, M., Tejchman, J.: Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granul. Matter 17(1), 145–164 (2014)

    Article  Google Scholar 

  15. Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Mühlhaus, H.-B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013)

  16. Nitka, M., Tejchman, J., Kozicki, J., Leśniewska, D.: DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granul. Matter 3, 325–343 (2015)

    Article  Google Scholar 

  17. Rognon, P., Einav, I.: Thermal transients and convective particle motion in dense granular materials. Phys. Rev. Lett. 105(21), 218301 (2010)

    Article  ADS  Google Scholar 

  18. Desrues, J., Viggiani, C.: Strain localization in sand: over- view of the experiments in Grenoble using stereophotogrammetry. J. Numer. Anal. Methods Geomech. 28(4), 279–321 (2004)

    Article  Google Scholar 

  19. Gudehus, G., Nűbel, K.: Evolution of shear bands in sand. Geotechnique 54(3), 187–201 (2004)

    Article  Google Scholar 

  20. Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, Borja, (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Berlin (2008)

    Google Scholar 

  21. Tejchman, J., Gorski, J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int. J. Solids Struct. 45(6), 1546–1569 (2008)

    Article  MATH  Google Scholar 

  22. Gudehus, G.: Phys. Soil Mech. Springer, Berlin (2011)

    Book  Google Scholar 

  23. Vardoulakis, I.: Shear band inclination and shear modulus in biaxial tests. Int. J. Numer. Anal. Methods Geomech. 4, 103–119 (1980)

    Article  MATH  Google Scholar 

  24. Tatsuoka, F., Nakamura, S., Huang, C.C., Tani, K.: Strength anisotropy and shear band direction in plane strain test of sand. Soils Found. 30(1), 35–54 (1990)

    Article  Google Scholar 

  25. Han, C., Vardoulakis, I.: Plane strain compression experiments on water saturated fine-grained sand. Geotechnique 41, 49–78 (1991)

    Article  Google Scholar 

  26. Yoshida, T., Tatsuoka, F., Siddiquee, M.S.A.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localisation and Bifurcation Theory for Soils and Rocks, pp. 165–181. Balkema, Rotterdam (1994)

    Google Scholar 

  27. Harris, W.W., Viggiani, G., Mooney, M.A., Finno, R.J.: Use of stereophotogrammetry to analyze the development of shear bands in sand. Geotech. Test J. 18(4), 405–420 (1995)

    Article  Google Scholar 

  28. Alshibli, K.A., Sture, S.: Shear band formation in plane strain experiments of sand. J. Geotech. Geoenviron. Eng. ASCE 126(6), 495–503 (2000)

    Article  Google Scholar 

  29. Mokni, M., Desrues, J.: Strain localization measurements in undrained plane strain biaxial tests on Hostun RF sand. Mech. Cohes. Frict. Mater. 4, 419–441 (1998)

    Article  Google Scholar 

  30. de Borst, R., Műhlhaus, H.B.: Gradient dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)

    Article  MATH  Google Scholar 

  31. Tejchman, J., Wu, W.: Numerical study on shear band patterning in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)

    Article  MATH  Google Scholar 

  32. Brinkgreve, R.: Geomaterial models and numerical analysis of softening. Dissertation, Delft University, pp. 1–153 (1994)

  33. Tejchman, J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Comput. Geotech. 31(8), 595–611 (2004)

    Article  Google Scholar 

  34. Tejchman, J., Wu, W.: Modeling of textural anisotropy in granular materials with micro-polar hypoplasticity. Int. J. Non-Linear Mech. 42, 882–894 (2007)

    Article  ADS  Google Scholar 

  35. Tejchman, J., Wu, W.: Non-coaxiality and stress-dilatancy rule in granular materials: FE investigation within micro-polar hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 33(1), 117–142 (2009)

    Article  MATH  Google Scholar 

  36. Tejchman, J., Górski, J.: FE study of patterns of shear zones in granular bodies during plane strain compression. Acta Geotech. 5(2), 95–112 (2010)

    Article  Google Scholar 

  37. Regueiro, R.A., Borja, R.I.: Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. Int. J. Solids Struct. 38(21), 3647–3672 (2001)

    Article  MATH  Google Scholar 

  38. Bobinski, J., Tejchman, J.: Simulations of shear zones and cracks in engineering materials using eXtended Finite Element Method. I. J. Numer. Anal. Meth. Geom. 40, 406–435 (2016)

    Article  Google Scholar 

  39. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465–481 (1998)

    Article  Google Scholar 

  40. Ord, A., Hobbs, B., Regenauer-Lieb, K.: Shear band emergence in granular materials—a numerical study. Int. J. Numer. Anal. Methods Geomech. 31, 373–393 (2007)

    Article  MATH  Google Scholar 

  41. Pena, A.A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 3–4, 279–292 (2007)

    Article  MATH  Google Scholar 

  42. Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13, 503–510 (2011)

    Article  Google Scholar 

  43. Lätzel, M., Luding, S., Herrmann, H.J., Howell, D.W., Behringer, R.P.: Comparing simulation and experiment of a 2D granular couette shear device. Eur. Phys. J. E11, 325–333 (2003)

    Google Scholar 

  44. Rojek, J.: Discrete element modelling of rock cutting. Comput. Methods Mater. Sci. 7(2), 224–230 (2007)

    Google Scholar 

  45. Nitka, M., Combe, G., Dascalu, C., Desrues, J.: Two-scale modeling of granular materials: a DEM-FEM approach. Granul. Matter 13, 277–281 (2011)

    Article  Google Scholar 

  46. Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)

    Article  ADS  MATH  Google Scholar 

  47. Šmilauer, V., Chareyre, B.: Yade DEM Formulation. Manual, (2011)

  48. Vardoulakis, I., Goldschneider, M., Gudehus, G.: Formation of shear bands in sand bodies as a bifurcation problem I. J. Numer. Anal. Methods Geomech. 2, 99–128 (1978)

    Article  Google Scholar 

  49. Gould, H., Tobochnik, J., Christian, W.: Introduction to computer simulation methods: application to physical systems (3rd edn), chapter 15, pp. 655. http://www.amazon.com/Introduction-Computer-Simulation-Methods-Addison-Wesley/dp/B00LZMC2N0 (2011)

  50. Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012)

    Article  Google Scholar 

  51. Kozicki, J., Tejchman, J., Műhlhaus, H.B.: Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Num. Anal. Methods Geomech. 38, 1923–1952 (2014)

    Article  Google Scholar 

  52. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. ASCE J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  53. Cundall, P.A., Hart, R.: Numerical modeling of discontinua. J. Eng. Comput. 9, 101–113 (1992)

    Article  Google Scholar 

  54. Kolymbas, D., Wu, W.: Recent results of triaxial tests with granular materials. Powder Technol. 60(2), 99–119 (1990)

    Article  Google Scholar 

  55. Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe (1992)

  56. Agnolin, I., Roux, J.N.: Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76, 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  57. Ballhause, D., König, M., Kröplin, B.: Modelling fabric-reinforced membranes with the discrete element method. Comput. Methods Appl. Sci. 8, 51–67 (2008)

    Article  MATH  Google Scholar 

  58. Cheung, G., O’Sullivan, C.: Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6, 483–500 (2008)

    Article  Google Scholar 

  59. Wang, Y., Tonon, F.: Modelling triaxial test on intact rock using discrete element method with membrane boundary. J. Eng. Mech. 135(9), 1029–1037

  60. Press, W.H.: Flicker noises in astronomy and elsewhere. Comments Astrophys. 7, 103. http://www.lanl.gov/dldstp/Flicker_Noise_1978.pdf (1978)

  61. Uesugi, M., Kishida, H., Tsubakihara, Y.: Behaviour of sand particles in sand-steel friction. Soils Found. 28(1), 107–118 (1988)

    Article  Google Scholar 

  62. Skarżyński, L., Tejchman, J.: Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography. Strain 52, 26–45 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support by the Grant 2011/03/B/ST8/05865 “Experimental and theoretical investigations of micro-structural phenomena inside of shear localization in granular materials” financed by the Polish National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozicki, J., Tejchman, J. DEM investigations of two-dimensional granular vortex- and anti-vortex-structures during plane strain compression. Granular Matter 18, 20 (2016). https://doi.org/10.1007/s10035-016-0627-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0627-z

Keywords

Navigation