Skip to main content
Log in

DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Shear zones in initially medium dense cohesionless sand for quasi-static earth pressure problem of a small-scale retaining wall were analysed with a discrete element method (DEM) using spheres with contact moments. The passive sand failure for a very rough retaining wall undergoing horizontal translation was discussed. The DEM calculations were carried out with the different mean grain diameter. Micro-structural events appearing within granular shear zones such as: vortices, force chains, vortex structures and local void ratio fluctuations were investigated. Special attention was laid on a vortex-force chain correlation and frequency of the vortex appearance. The calculated geometry of shear zones was compared with experimental results of laboratory model tests analyzed using the DIC. DEM demonstrated its ability to describe the geometry of shear localization in sand behind the retaining wall and to follow the evolution of micro-structure in granular shear zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Roscoe, K.H.: The influence of strains in soil mechanics. Geotechnique 20(2), 129–170 (1970)

    Article  Google Scholar 

  2. Widulinski, L., Tejchman, J., Kozicki, J., Leśniewska, D.: Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. Int. J. Solids Struct. 48(7–8), 1191–1209 (2011)

    Article  MATH  Google Scholar 

  3. Leśniewska, D., Niedostatkiewicz, M., Tejchman, J.: Experimental study on shear localization in granular materials within combined strain and stress field. Strain 47(2), 218–231 (2012)

    Google Scholar 

  4. Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matter 14(6), 695–705 (2012)

    Article  Google Scholar 

  5. Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech. Lett. 2, 113–118 (2012)

    Article  Google Scholar 

  6. Miller, T., Rognon, P., Metzger, B., et al.: Eddy viscosity in dense granular flows. Phys. Rev. Lett. 111(5), 058002 (2013)

    Article  ADS  Google Scholar 

  7. Lucia, J.B.A.: Passive earth pressure and failure in sand. Research Report, University of Cambridge, Cambridge (1966)

  8. Gudehus, G., Schwing, E.: Standsicherheit historischer Stützwände. Internal Report of the Institute of Soil and Rock Mechanics, University Karlsruhe, Karlsruhe (1986)

  9. Niedostatkiewicz, M., Leśniewska, D., Tejchman, J.: Experimental analysis of shear zone patterns in sand for earth pressure problems using particle image velocimetry. Strain 47(s2), 218–231 (2011)

    Article  Google Scholar 

  10. Cundall, P.A., Hart, R.: Numerical modeling of discontinua. J. Eng. Comput. 9, 101–113 (1992)

    Article  Google Scholar 

  11. Šmilauer, V., Chareyre, B.: Yade DEM formulation. Yade Documentation, Yade Project, 1st edn. http://yade-dem.org/doc/formulation.html (2011)

  12. Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)

    Article  ADS  MATH  Google Scholar 

  13. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. ASCE J. Eng. Mech. 124(3), 285–292 (1988)

    Article  Google Scholar 

  14. Jiang, M.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005)

    Article  Google Scholar 

  15. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behaviour of granular materials. Granul. Matter 12(5), 527–541 (2010)

    Article  MATH  Google Scholar 

  16. Kozicki, J., Tejchman, J., Műhlhaus, H.-B.: Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Anal. Numer. Methods Geomech. 38, 1923–1952 (2014)

    Article  Google Scholar 

  17. Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012)

    Article  Google Scholar 

  18. Hertz, H.: On the contact of elastic solids. J. Reine und Angewandte Mathematik 92(156–171), 1982 (1882)

    Google Scholar 

  19. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Trans. ASME 75, 327–344 (1953)

    MathSciNet  Google Scholar 

  20. Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Mühlhaus, H.-B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013)

  21. Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe (in German). Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe, Karlsruhe (1992)

  22. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Roux, J.N., Chevoir, F.: Discrete numerical simulation and the mechanical behaviour of granular materials. Bulletin des Laboratoires des Ponts et Chaussees 254, 109–138 (2005)

    Google Scholar 

  24. Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Geotechnique 54(3), 187–201 (2004)

    Article  Google Scholar 

  25. Tejchman, J., Bauer, E., Tantono, S.F.: Influence of initial density of cohesionless soil on evolution of passive earth pressure. Acta Geotech. 2(1), 53–63 (2007)

    Article  Google Scholar 

  26. Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Berlin (2008)

    Google Scholar 

  27. Gudehus, G.: Erddruckermittlung. Grundbautaschenbuch, Teil 1, Ernst und Sohn (1996)

  28. Chupin, O., Rechenmacher, A.L, Abedi, S.: Finite strain analysis of non-uniform deformations inside shear bands in sands. Int. J. Numer. Anal. Methods Geomech. 36(14), 1651–1666 (2012)

  29. Thornton, C., Zhang, L.: Numerical simulations of the direct shear test. Chem. Eng. Technol. 26(2), 1–4 (2003)

    Article  Google Scholar 

  30. Yan, Y., Ji, S.: Discrete element modelling of direct shear test for a granular material. Int. J. Numer. Anal. Methods Geomech. 34, 978–990 (2010)

    MATH  Google Scholar 

  31. Tordesillas, A., Walker, D.M., Qun Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  32. Wood, D.M., Lesniewska, D.: Stresses in granular materials. Granul. Matter 13, 395–415 (2011)

    Article  Google Scholar 

  33. Radjai, F., Roux, S.: Turbulent-like fluctuation in quasi-static flow of granular media. Phys. Rev. Lett. 89, 064302 (2002)

    Article  ADS  Google Scholar 

  34. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31, 407–442 (1999)

    Article  Google Scholar 

  35. Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)

    Article  ADS  Google Scholar 

  36. Liu, X., Papon, A., Mühlhaus, H.-B.: Numerical study of structural evolution in shear band. Philoso. Mag. 92(28–30), 3501–3519 (2012)

    Article  ADS  Google Scholar 

  37. Peters, J.F., Walizer, L.E.: Patterned nonaffine motion in granular media. J. Eng. Mech. 139(10), 1479–1490 (2013)

    Article  Google Scholar 

  38. Tordesillas, A., Muthuswamy, M., Walsh, S.D.C.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134(12), 1095–1113 (2008)

    Article  Google Scholar 

  39. Tejchman, J., Górski, J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int. J. Solids Struct. 45(6), 1546–1569 (2008)

    Article  MATH  Google Scholar 

  40. Tejchman, J., Wu, W.: Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity. Int. J. Non-Linear Mech. 42(6), 882–894 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research work has been carried out as a part of the Project 2011/03/B/ST8/05865 “Experimental and theoretical investigations of micro-structural phenomena inside strain localization in granular materials” financed by Polish National Research Centre (NCN) in the time period 2013–2015. The project was approved in the end of 2012 by the review board of Polish National Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitka, M., Tejchman, J., Kozicki, J. et al. DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granular Matter 17, 325–343 (2015). https://doi.org/10.1007/s10035-015-0558-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0558-0

Keywords

Navigation