Skip to main content

Simulation of the Influence of Grain Damage on the Evolution of Shear Strain Localization

  • Chapter
  • First Online:
Continuous Media with Microstructure 2

Abstract

The influence of grain damage on shear strain localization in a lateral infinite granular layer under monotonic plane shearing is simulated using a micro-polar continuum description. The change of the grading of the grain sizes caused by grain damage is taken into account in a simplified manner by a reduction of the mean grain diameter, which is embedded in the constitutive model as an internal length. It is assumed that a reduction of the mean grain diameter caused by grain breakage and grain abrasion is related to an increase in the pressure, the micro-rotation and the micro-curvature. A reduction of the grain sizes is accompanied by a reduction of the limit void ratios and a reduction of the material against compaction. In the constitutive model the decrease of the mean grain diameter is linked to the so-called solid hardness, which is defined within a continuum description. The proposed concept of reduction of the mean grain diameter and the solid hardness is embedded in a micro-polar hypoplastic model. The results of the numerical simulations show that the reduction of the mean grain diameter has a significant effect on the evolution of the void ratio within the zone of shear strain localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABAQUS User’s Manual Version 6.3. Hibbitt, Karlsson and Sorensen Inc.: Pawtucket, RI, USA (2002)

    Google Scholar 

  2. Alikarami, R., Andò, E., Gkiousas-Kapnisis, M., Torabi, A., Viggiani, G.: Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotechnica 10, 15–30 (2015)

    Article  Google Scholar 

  3. Ando, E., Hall, S.A., Viggiani, G., Desrues, J., Besuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica 7, 1–13 (2012)

    Article  Google Scholar 

  4. Bauer, E., Wu, W.: A hypoplastic constitutive model for cohesive powders. Powder Technology 85, 1–9 (1995)

    Article  Google Scholar 

  5. Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations 36(1), 13–26 (1996)

    Article  Google Scholar 

  6. Bauer, E.: Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material. Mechanics of Materials 31, 597–609 (1999)

    Article  Google Scholar 

  7. Bauer, E.: Conditions for embedding Casagrande’s critical states into hypoplasticity. Mechanics of Cohesive-Frictional Materials 5, 125–148 (2000)

    Article  Google Scholar 

  8. Budhu, M.: Nonuniformities imposed by simple shear apparatus. Canadian Geotechnical Journal 21(1), 125–137 (1984)

    Article  Google Scholar 

  9. Bauer, E., Huang, W.: Evolution of polar quantities in a granular Cosserat material under shearing. In: Mühlhaus, H.B., Dyskin, A.V., Pasternak, E. (eds.) Proceedings of the 5th International Workshop on Bifurcation and Localization Theory in Geomechanics, Balkema press, pp. 227–38 (2001)

    Google Scholar 

  10. Bauer, E., Huang, W., Wu, W.: Investigation of shear banding in an anisotropic hypoplastic material. Solids and Structures 41, 5903–5919 (2004)

    Article  MATH  Google Scholar 

  11. Bauer, E.: Initial response of a micro-polar hypoplastic material under plane shearing. J. Engin. Mathematics 52, 35–51 (2005)

    Article  MATH  Google Scholar 

  12. Bauer, E.: Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotechnica 4, 261–72 (2009)

    Article  Google Scholar 

  13. Bauer, E.: Analysis of shear banding with a hypoplastic constitutive model for a dry and cohesionless granular material. In: Albers, B. Continuous Media with Microstructure, pp. 335–350. Springer Publisher (2010)

    Google Scholar 

  14. Bauer, E., Li, L., Huang, W.: Hypoplastic constitutive modelling of grain damage under plane shearing. In: Bifurcation and Degradation of Geomaterials in the New Millennium, pp. 181–187 (2015)

    Google Scholar 

  15. Daouadji, A., Hicher, P.Y., Rahma, A.: An elastoplastic model for granular materials taking into account grain breakage. Eur. J. Mech. A/Solids 20, 113–137 (2001)

    Google Scholar 

  16. Ebrahimian, B., Bauer, E.: Numerical simulation of the effect of interface friction of a bounding structure on shear deformation in a granular soil. International Journal for Numerical and Analytical Methods in Geomechanics 36, 1486–1506 (2012)

    Article  Google Scholar 

  17. Ehlers, W., Wenz, S.: From particle ensembles to Cosserat continua: definition of the macroscopic variables. In: Vermeer, P.A., Ehlers, W., Herrmann, H.J., Ramm, E. (eds.) Modelling of Cohesive-Frictional Materials, pp. 149–159. Balkema at Taylor & Francis, Lisse (2004)

    Google Scholar 

  18. Eringen, A.C.: Polar and nonlocal field theories. IV, Academic Press, New York, San Francisco, London, Continuum Physics (1976)

    Google Scholar 

  19. Garga, V.K.: Infante Sedano, J. A.: Steady state strength of sands in a constant volume ring shear apparatus. Geotechnical Testing Journal 25, 414–421 (2002)

    Google Scholar 

  20. Goddard, J.D.: Parametric hypoplasticity as continuum model for granular media - from Stokesium to Mohr - Coulombium and beyond. Granular Mat. 12, 145–150 (2010)

    Article  MATH  Google Scholar 

  21. Green, A.E., Naghdi, P.M.: A general Theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils and Foundations 36(1), 1–12 (1996)

    Article  Google Scholar 

  23. Gudehus, G.: Shear localization in simple grain skeleton with polar effect. In: Adachi, T., Oka, F., Yashima, A. (eds.) Proceedings of the 4th International Workshop on Localization and Bifurcation Theory for Soils and Rocks. pp. 3–10. Balkema press (1998)

    Google Scholar 

  24. Gudehus, G., Jiang, Y.M., Liu, M.: Seismo - and thermodynamics of granular solids. Granular Matter 13, 319–340 (2011)

    Article  Google Scholar 

  25. Huang, W.: Hypoplastic modelling of shear localisation in granular materials, Ph.D. thesis, Graz University of Technology, Austria (2000)

    Google Scholar 

  26. Huang, W., Nübel, K., Bauer, E.: A polar extension of hypoplastic model for granular material with shear localization. Mechanics of Materials 34, 563–576 (2002)

    Article  Google Scholar 

  27. Huang, W., Bauer, E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Methods Geomech. 27, 325–352 (2003)

    Google Scholar 

  28. Kolymbas, D.: An outline of hypoplasticity. Archive of Applied Mechanics 61, 143–151 (1991)

    MATH  Google Scholar 

  29. Luzzani, L., Coop, M.R.: On the relationship between particle breakage and the critical state of sand. Soils and Foundation 42(2), 71–82 (2002)

    Article  Google Scholar 

  30. Masin, D., Herle, I.: Improvement of a hypoplastic model to predict clay behaviour under undrained conditions. Acta Geotechnica 2, 261–268 (2007)

    Article  Google Scholar 

  31. Matsuoka, H., Nakai, T.: Stress-strain relationship of soil based on the ‘SMP’. In: Proceedings of the Speciality Session 9, IX International Conference on Soil Mechanics and Foundation Engineering, pp. 153–162. Tokyo (1977)

    Google Scholar 

  32. Mühlhaus, H.B.: Application of Cosserat theory in numerical solutions of limit load problems. Archive of Applied Mechanics 59(2), 124–137 (1989)

    Google Scholar 

  33. Nguyen, G.D., Einav, I.: Numerical regularization of a model based on breakage mechanics for granular materials. International Journal for Solids and Structures 47(10), 1350–1360 (2010)

    Article  MATH  Google Scholar 

  34. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2(4), 279–299 (1997)

    Article  Google Scholar 

  35. Oda, M.: Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (ed.) Powders and Grains, Vol. 3, pp. 161–167 (1993)

    Google Scholar 

  36. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.-Y.: The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mechanica 225(8), 2199–2216 (2014)

    Article  MATH  Google Scholar 

  37. Ovalle, C., Dano, C., Hicher, P.Y., Cisternas, M.: An experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio. Canadian Geotechnical Journal 52, 1–12 (2015)

    Article  Google Scholar 

  38. Sadrekarimi, A., Olson, S.M.: Critical state friction angle of sands. Géotechnique 61(9), 771–783 (2011)

    Article  Google Scholar 

  39. Salim, W., Indraratna, B.: A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Canadian Geotechnical Journal 41, 657–671 (2004)

    Article  Google Scholar 

  40. Tejchman, J., Bauer, E.: Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Comput. Geotech. 19, 221–44 (1996)

    Article  Google Scholar 

  41. Tejchman, J., Bauer, E.: Fe-simulations of a direct and a true simple shear test within a polar hypoplasticity. Computers and Geotechnics 32(1), 1–16 (2005)

    Article  Google Scholar 

  42. Tejchman, J.: Effect of grain crushing on shear localization in granular bodies within micro-polar hypoplasticity. Arch. Hydro-Engineering Environ. Mech. 57, (1–2), 3–30 (2010)

    Google Scholar 

  43. Tejchman, J., Górski, J., Einav, I.: Effect of grain crushing on shear localization in granular bodies during plane strain compression. Int. J. Numer. Anal. Meth. Geomech. 36, 1909–1931 (2012)

    Article  Google Scholar 

  44. Vardoulakis, I.: Shear banding and liquefaction in granular materials on the basis of a Cosserat continuum theory. Ingenieur Archiv 59, 106–113 (1989)

    Article  Google Scholar 

  45. Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials. Mech. Mat. 23, 45–69 (1996)

    Article  Google Scholar 

  46. Wu, W., Kolymbas, D.: Hypoplasticity then and now. In: Kolymbas (ed.) Constitutive Modelling of Granular Materials, pp. 57–105, Springer press (2000)

    Google Scholar 

  47. Wu, W., Niemunis, A.: Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mechanics of Cohesive-Frictional Materials 1, 145–163 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The assistance of Mr. Linke Li in calibrating the model and running the numerical simulations presented in the paper is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bauer, E. (2016). Simulation of the Influence of Grain Damage on the Evolution of Shear Strain Localization. In: Albers, B., Kuczma, M. (eds) Continuous Media with Microstructure 2. Springer, Cham. https://doi.org/10.1007/978-3-319-28241-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28241-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28239-8

  • Online ISBN: 978-3-319-28241-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics