Skip to main content
Log in

Regulation of Microbial Community Composition and Activity by Soil Nutrient Availability, Soil pH, and Herbivory in the Tundra

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil nitrogen (N) availability and pH constitute major abiotic controls over microbial community composition and activity in tundra ecosystems. On the other hand, mammalian grazers form an important biotic factor influencing resource coupling between plants and soil microorganisms. To investigate individual effects and interactions among soil nutrients, pH, and grazing on tundra soils, we performed factorial treatments of fertilization, liming, and grazer exclusion in the field for 3 years at 2 contrasting tundra habitats, acidic (N-poor) and non-acidic (N-rich) tundra heaths. The effects of all treatments were small in the non-acidic tundra heaths. In the acidic tundra heaths, fertilization decreased the fungal:bacterial ratio as analyzed by soil PLFAs, but there were no effects of liming. Fertilization increased soil N concentrations more drastically in ungrazed than grazed plots, and in parallel, fertilization decreased the fungal:bacterial ratio to a greater extent in the ungrazed plots. Liming, on the other hand, partly negated the effects of fertilization on both soil N concentrations and PLFAs. Fertilization drastically increased the activity of phenol oxidase, a microbial enzyme synthesized for degradation of soil phenols, in grazed plots, but had no effect in ungrazed plots. Taken together, our results demonstrate that grazers have the potential to regulate the fungal:bacterial ratio in soils through influencing N availability for the soil microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aber JD, Melillo JM. 1980. Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can J Bot 58:416–21.

    CAS  Google Scholar 

  • Anderson M, Kjoller A, Struwe S. 2004. Microbial enzyme activities in leaf litter, humus and mineral soil layers in European forests. Soil Biol Biochem 36:1527–37.

    Article  Google Scholar 

  • Boerner REJ, Decker KLM, Sutherland E. 2000. Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biol Biochem 32:899–908.

    Article  CAS  Google Scholar 

  • Bråthen KA, Ims RA, Yoccoz NG, Fauchald P, Tveraa T, Hausner VH. 2007. Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems 10:773–89.

    Article  Google Scholar 

  • Brookes P, Kragt JF, Powlson DS, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature. Soil Biol Biochem 17:831–5.

    Article  CAS  Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG. 2010. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–54.

    Article  PubMed  CAS  Google Scholar 

  • Chapin FSIII, Johnson DA, McKendrick JD. 1986. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory. J Ecol 68:189–209.

    Google Scholar 

  • Crawley MJ. 2007. The R book. Chichester: Wiley.

    Book  Google Scholar 

  • Esberg C. 2010. Phosphorus availability and microbial respiration across biomes: from plantation forest to tundra. Doctoral Thesis, Department of Ecology and Environmental Science, 2010.

  • Eskelinen A. 2008. Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions. J Ecol 96:155–65.

    Google Scholar 

  • Eskelinen A. 2010. Resident functional composition mediates the impacts of nutrient enrichment and neighbour removal on plant immigration rates. J Ecol 98:540–50.

    Article  Google Scholar 

  • Eskelinen A, Stark S, Männistö MK. 2009. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161:113–23.

    Article  PubMed  Google Scholar 

  • Eskelinen A, Virtanen R. 2005. Local and regional processes in low-productive mountain plant communities: the roles of seed and microsite limitation in relation to grazing. Oikos 110:360–8.

    Article  Google Scholar 

  • Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–31.

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in belowground communities. Ecol Lett 12:1238–49.

    Article  PubMed  Google Scholar 

  • Fog K. 1988. The N effect on decomposition. Biol Rev 63:433–62.

    Article  Google Scholar 

  • Frostegård A, Tunlid A, Bååth E. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth 14:151–63.

    Article  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–30.

    Article  Google Scholar 

  • Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65.

    Article  Google Scholar 

  • Gough L, Ramsey EA, Johnson DR. 2007. Plant-herbivore interactions in Alaskan arctic tundra change with soil nutrient availability. Oikos 116:407–18.

    Article  Google Scholar 

  • Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA. 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J Ecol 88:54–66.

    Article  Google Scholar 

  • Grellmann D. 2002. Plant responses to fertilization and exclusion of grazers on an arctic tundra heath. Oikos 98:190–204.

    Article  Google Scholar 

  • Hilli S, Stark S, Derome J. 2008. Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems 11:270–82.

    Article  CAS  Google Scholar 

  • Järvinen A. 1987. Basic climatological data on the Kilpisjärvi area, NW Finnish Lapland. Kilpisjärvi Notes 10:1–16.

    Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK. 1999. Coupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processes. Appl Soil Ecol 11:135–46.

    Article  Google Scholar 

  • Jonasson S, Chapin FS III, Shaver GR. 2001. Biogeochemistry in the Arctic: patterns, processes and controls. In: Global biogeochemical cycles in the climate system. San Diego: Academic Press. p 139–50

  • Kroppenstedt RM. 1985. Fatty acid and menaquinone analysis of Actinomycetes and related organisms. In: Goodfellow M, Minnikin DE, Eds. Chemical methods in bacterial systematics. London: Academic Press. p 173–99.

    Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FSIII. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–3.

    Article  PubMed  CAS  Google Scholar 

  • Männistö MK, Häggblom MM. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–43.

    Article  PubMed  Google Scholar 

  • Männistö MK, Tiirola M, Häggblom MM. 2007. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–65.

    Article  PubMed  Google Scholar 

  • Nowinski NS, Trumbore SE, Schuur EAG, Mack MC, Shaver GR. 2008. Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems 11:16–25.

    Article  CAS  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. (2011) Vegan: community ecology package. R package version 1. p 17–8. http://CRAN.R-project.org/package=vegan.

  • Olofsson J, Kitti H, Rautiainen P, Stark S, Oksanen L. 2001. Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. Ecography 24:13–24.

    Article  Google Scholar 

  • Olofsson J, Oksanen L. 2002. Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos 96:507–15.

    Article  Google Scholar 

  • Olofsson J, Stark S, Oksanen L. 2004. Reindeer influence on ecosystem processes in the tundra. Oikos 105:386–96.

    Article  CAS  Google Scholar 

  • Olsson PA. 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–10.

    Article  CAS  Google Scholar 

  • Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-PLUS. New York: Springer.

    Book  Google Scholar 

  • Post ES, Klein DR. 1996. Relationship between graminoid growth form and levels of grazing by caribou (Rangifer tarandus) in Alaska. Oecologia 107:364–72.

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–13.

    Article  CAS  Google Scholar 

  • R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Rousk J, Brookes PC, Bååth E. 2010. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem 42:926–34.

    Article  CAS  Google Scholar 

  • Ruess L, Häggblom MM, García Zapata EJ, Dighton J. 2002. Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain. Soil Biol Biochem 34:745–56.

    Article  CAS  Google Scholar 

  • Ruotsalainen AL, Eskelinen A. 2011. Root fungal symbionts interact with mammalian herbivory, soil nutrient availability and specific habitat conditions. Oecologia (in press).

  • Ryan MG, Melillo JM, Ricca A. 1990. A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–71.

    Article  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Schimel JP, Weintraub MN. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–63.

    Article  CAS  Google Scholar 

  • Schmidt SK, Lipson D, Ley RE, Fisk MC, West AE. 2004. Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils. Biogeochemistry 69:1–17.

    Article  CAS  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB. 2006. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–53.

    Article  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC, Whitman WB. 2003. Solirubrobacter pauli gen, nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–90.

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Bony A, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–64.

    PubMed  Google Scholar 

  • Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404.

    Article  CAS  Google Scholar 

  • Stahl PD, Klug MJ. 1996. Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62:4136–46.

    PubMed  CAS  Google Scholar 

  • Stark S, Grellmann D. 2002. Soil microbial responses to herbivory in an arctic tundra heath at two levels of nutrient availability. Ecology 83:2736–44.

    Article  Google Scholar 

  • Stark S, Strömmer R, Tuomi J. 2002. Reindeer grazing and soil microbial processes in two suboceanic and two subcontinental tundra heaths. Oikos 97:69–78.

    Article  Google Scholar 

  • Stark S, Kytöviita M–M. 2006. Simulated grazer effects on microbial respiration in a subarctic meadow: Implications for nutrient competition between plants and soil microorganisms. Appl Soil Ecol 31:20–31.

    Article  Google Scholar 

  • Sundqvist MK, Giesler R, Graae BJ, Wallander H, Fogelberg E, Wardle DA. 2011. Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos 120:128–42.

    Article  CAS  Google Scholar 

  • Suominen K, Kitunen V, Smolander A. 2003. Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Eur J Soil Sci 54:287–93.

    Article  CAS  Google Scholar 

  • Takahashi Y, Matsumoto A, Morisaki K, Omura S. 2006. Patulibacter minatonensis gen, nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol 56:401–6.

    Article  PubMed  CAS  Google Scholar 

  • Waldrop MP, Zak DR. 2006. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–33.

    Article  CAS  Google Scholar 

  • van der Wal R, van Lieshout SMJ, Loonen MJJE. 2001. Herbivore impact on moss depth, soil temperature and arctic plant growth. Polar Biol 24:29–32.

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–33.

    Article  PubMed  CAS  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62.

    Article  Google Scholar 

  • Williams BL, Shand CA, Hill M, O’Hara C, Smith S, Young ME. 1995. A procedure for the simultaneous oxidation of total soluble nitrogen and phosphorus in extracts of fresh and fumigated soils and litters. Commun Soil Sci Plant Anal 26:91–106.

    Article  CAS  Google Scholar 

  • Zak DR, Kling GW. 2006. Microbial community composition and function across an arctic tundra landscape. Ecology 87:1659–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Risto Virtanen for help in developing the ideas for the experiment, Kuisma Ranta for help during the establishment of the field experiment, and Riitta Nielsen and Sirkka Aakkonen for help in the laboratory. We also thank Joshua Schimel for inspiring discussions. This study was funded by the Academy of Finland (projects 108235 and 130507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Stark.

Additional information

Author contributions

SS, AE, and MKM conceived the study. AE conducted field manipulations. SS and MKM conducted laboratory analyses and AE performed statistical tests. SS wrote the article with contributions from both co-authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, S., Eskelinen, A. & Männistö, M.K. Regulation of Microbial Community Composition and Activity by Soil Nutrient Availability, Soil pH, and Herbivory in the Tundra. Ecosystems 15, 18–33 (2012). https://doi.org/10.1007/s10021-011-9491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9491-1

Keywords

Navigation