Skip to main content

Advertisement

Log in

Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bååth E, Anderson T-H (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  CAS  Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    Article  CAS  Google Scholar 

  • Berendse F (1994) Litter decomposability—a neglected component of plant fitness. J Ecol 82:187–190

    Article  Google Scholar 

  • Bezemer TM, Lawson CS, Hedlund K, Edwards AR, Brook AJ, Igual JM, Mortimer SR, van der Putten WH (2006) Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J Ecol 94:893–904

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brookes P, Kragt JF, Powlson DS, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature. Soil Biol Biochem 17:831–835

    Article  CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611–619

    Google Scholar 

  • Cornelissen JHC, Quested HM, van Logtestijn RSP, Pérez-Harguindeguy N, Gwynn-Jones D, Díaz S, Callaghan TV, Press MC, Aerts R (2006) Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types? Oecologia 147:315–326

    Article  PubMed  CAS  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Crawley MJ, Johnston AE, Silvertown J, Dodd M, de Mazancourt C, Heard MS, Henman DF, Edwards GR (2005) Determinants of species richness in the Park Grass Experiment. Am Nat 165:192–197

    Article  Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallén RB, van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along latitudinal gradient? J Ecol 93:817–828

    Article  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Eskelinen A (2008) Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions. J Ecol 96:155–165

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 17:626–631

    Google Scholar 

  • Fierer N, Morse JL, Berthrong ST, Bernhardt ES, Jackson RB (2007) Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88:2162–2173

    Article  PubMed  Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  • Gallet C, Nilsson M-C, Zackrisson O (1999) Phenolic metabolites of ecological significance in Empetrum hermaphroditum leaves and associated humus. Plant Soil 210:1–9

    Article  CAS  Google Scholar 

  • Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J Ecol 88:54–66

    Article  Google Scholar 

  • Hagerman AE, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem 26:809–812

    Article  CAS  Google Scholar 

  • Hämet-Ahti L, Suominen J, Ulvinen T, Uotila P (eds) (1998) Retkeilykasvio (Field flora of Finland), 4th edn. Finnish Museum of Natural History, Botanical Museum, Helsinki

    Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Hilli S, Stark S, Derome J (2008) Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems 11:270–282

    Article  CAS  Google Scholar 

  • Hobbie S (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hobbie S (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462

    Article  Google Scholar 

  • Högberg MN, Högberg PP, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    Article  PubMed  Google Scholar 

  • Järvinen A (1987) Basic climatological data on the Kilpisjärvi area, NW Finnish Lapland. Kilpisjärvi Notes 10:1–16

    Google Scholar 

  • John MK (1970) Colorimetric determination of phosphorous in soil and plant materials with ascorbic acid. Soil Sci 100:214–220

    Article  Google Scholar 

  • Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. III. Responses to the chemical and biological environment. Springer, Berlin, pp 201–244

    Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of Actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Lützow M, Kögel-knabner I, Ekschmitt K, Matzer E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Madigan M, Martinko J, Parker J (2003) Brock biology of microorganisms. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Männistö MK, Häggblom MM (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–243

    Article  PubMed  CAS  Google Scholar 

  • Männistö MK, Tiirola M, Häggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465

    Article  PubMed  CAS  Google Scholar 

  • Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492

    Article  CAS  Google Scholar 

  • Nilsson M-C, Wardle DA, Zackrisson O, Jäderlund A (2002) Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. Oikos 97:3–17

    Article  Google Scholar 

  • Nordin A, Schmidt IK, Shaver GR (2004) Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962

    Article  Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Article  CAS  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    Article  PubMed  Google Scholar 

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiol biochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Peet RK, Fridley JD, Gramling JM (2003) Variation in species richness and species pool size across a pH gradient in forests of the Southern Blue Ridge Mountains. Folia Geobot 38:391–401

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen JCH, Verdramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Google Scholar 

  • Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221

    Article  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  • Ruess L, Häggblom MM, García Zapata EJ, Dighton J (2002) Fatty acids of fungi and nematodes–possible biomarkers in the soil food chain? Soil Biol Biochem 34:745–756

    Article  CAS  Google Scholar 

  • Ruess L, Schütz K, Haubert D, Häggblom MM, Kandeler E, Scheu S (2005) Application of lipid analysis to understand trophic interactions in soil. Ecology 86:2075–2082

    Article  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–171

    Article  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–753

    Article  CAS  Google Scholar 

  • Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecol Appl 11:1206–1223

    Google Scholar 

  • Suominen K, Kitunen V, Smolander A (2003) Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Eur J Soil Sci 54:287–293

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Virtanen R, Dirnböck T, Dullinger S, Grabherr G, Pauli H, Staudinger M, Villar L (2003) Patterns in the plant species richness of European high mountain vegetation. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe, Ecological Studies 167. Springer, Berlin, pp 149–172

    Google Scholar 

  • Virtanen R, Oksanen J, Oksanen L, Razzhivin VY (2006) Broad-scale vegetation-environment relationships in Eurasian high-latitude areas. J Veg Sci 17:519–528

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in population biology 34. Princeton University Press, NJ

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Wieder RK, Starr ST (1998) Quantitative determination of organic fractions in highly organic Sphagnum peat soils. Commun Soil Sci Plant Anal 29:847–857

    Article  CAS  Google Scholar 

  • Williams BL, Shand CA, Hill M, O’Hara C, Smith S, Young ME (1995) A procedure for the simultaneous oxidation of total soluble nitrogen and phosphorus in extracts of fresh and fumigated soils and litters. Commun Soil Sci Plant Anal 26:91–106

    Article  CAS  Google Scholar 

  • Zak DR, Kling GW (2006) Microbial community composition and function across an arctic tundra landscape. Ecology 87:1659–1670

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Risto Virtanen and Jari Oksanen for discussions and comments on the earlier versions of the manuscript. Jari Oksanen is also appreciated for statistical advice. We thank Riitta Nielsen and Tuulikki Pakonen for helping with the soil analyses and organic matter fractionation. Kilpisjärvi Biological Station is thanked for providing laboratory facilities, assistance and lodging during the fieldwork. This study was financially supported by grants from the Societas pro Fauna et Flora Fennica, the Oskar Öflund Foundation and the Oulu University Scholarship Foundation (to A. Eskelinen). All experiments complied with the laws of Finland at the time the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Eskelinen.

Additional information

Communicated by Stephan Hättenschwiler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskelinen, A., Stark, S. & Männistö, M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161, 113–123 (2009). https://doi.org/10.1007/s00442-009-1362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1362-5

Keywords

Navigation