Skip to main content
Log in

Thermalkalibacillus uzonensis gen. nov. sp. nov, a novel aerobic alkali-tolerant thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58T was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7–0.8 μm in width and 5.5–12 μm in length and produced terminal spherical spores of 1.2–1.6 μm in diameter with the mother cell swelling around 2 μm in diameter (drumstick-type morphology). Cells grew optimally at pH25°C 8.2–8.4 and temperature 50–52°C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO2 (both with or without H2) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, d-galactose, d-mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58T is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58T (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov: two haloalkaliphiles from Mono lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  PubMed  CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus Bacillus cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology. Williams & Winkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Cook GM, Keis S, Morgan HW, van Ballmoos C, Matthey U, Kaim G, Dimroth P (2003) Purification and biochemical characterization of the F1FO-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:4442–4449

    Article  PubMed  CAS  Google Scholar 

  • Cypionka H, Meyer O (1982) Influence of carbon monoxide on growth and respiration of carboxydotrophic and other aerobic organisms. FEMS Microbiol Lett 15:209–214

    Article  CAS  Google Scholar 

  • Demharter W, Hensel R (1989) Bacillus thermocloaceae sp. nov, a new thermophilic species from sewage-sludge. Syst Appl Microbiol. 11:272–276

    Google Scholar 

  • Dunfield KE, King GM (2004) Molecular analysis of carbon monoxide-oxidizing bacteria colonizing recent Hawaiian volcanic deposits. Appl Environ Microbiol 70:4242–4248

    Article  PubMed  CAS  Google Scholar 

  • Garrity MG, Bell JA, Lilburn TG (2004) Taxonomic Outline of the Prokaryotes. Bergey’s Manual of Systematic Bacteriology, second edition, release 5.0 May 2004. http://141.150.157.80/bergeysoutline/outline/bergeysoutline_5_2004.pdf

  • Gee DL, Brown WD (1980) The effect of carbon monoxide on bacterial growth. Meat Science 5:215–222

    Article  Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty-acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    Article  CAS  Google Scholar 

  • Hardy K, King GM (2001) Enrichment of a high affinity CO-oxidizer in Maine forest soil. Appl Environ Microbiol 67:3671–3676

    Article  PubMed  CAS  Google Scholar 

  • Heyndrickx M, Lebbe L, Vancanneyt M, Kersters K, de Vos P, Logan NA, Forsyth G, Nazli S, Ali N, Berkeley RCW (1997) A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-stauffer et al 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended descriptions of A. aneurinilyticus corrig, A. migulanus, and A. thermoaerophilus. Int J Syst Bacteriol 47:808–817

    Google Scholar 

  • Higgins DG, Sharp PM (1988) Clustal: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: Some applications of their products for biotechnology. Microbiol. Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Horikoshi K (2004) Alkaliphiles. Proc Jpn Acad Ser B-Phys Biol Sci 80:166–178

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–123

    Google Scholar 

  • Kampfer P (1994) Limits and possibilities of total fatty-acid analysis for classification and identification of bacillus species. Syst Appl Microbiol 17:86–98

    Google Scholar 

  • Kaneda T (1967) Fatty acids in genus Bacillus. I. iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol 93:894–903

    PubMed  CAS  Google Scholar 

  • Kevbrin VV, Romanek CS, Wiegel J (2004) Alkalithermophiles: a double challenge from extreme environments. In: Seckbach J (ed) Cellular origins: life in extreme habitats and astrobiology. Kluwer Academic, Dordrecht, The Netherlands

  • King GA (2003) Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 69:7257–7265

    Article  PubMed  CAS  Google Scholar 

  • Kruger B, Meyer O (1984) Thermophilic Bacilli growing with carbon-monoxide. Arch Microbiol 139:402–408

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinform 5:150–163

    Article  CAS  Google Scholar 

  • Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35:493–496

    Article  CAS  Google Scholar 

  • Meier-Stauffer K, et al. (1996) Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46:532–541

    CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Google Scholar 

  • Meyer O, Frunzke K, Gadkari D, Jacobitz S, Hugendieck I, Kraut M (1990) Utilization of carbon-monoxide by aerobes – recent advances. Fems Microbiol Rev 87:253–260

    Article  CAS  Google Scholar 

  • Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    Article  PubMed  CAS  Google Scholar 

  • Nazina TN, et al. (2001) Taxonomic study of aerobic thermophilic Bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    PubMed  CAS  Google Scholar 

  • Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains – proposal for 9 new species. Microbiol UK 141:1745–1761

    Article  CAS  Google Scholar 

  • Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465

    Article  PubMed  CAS  Google Scholar 

  • Peddie CJ, Cook GM, Morgan HW (2000) Sucrose transport by the alkaliphilic, thermophilic Bacillus sp. strain TA2.A1 is dependent on a sodium gradient. Extremophiles 4:291–296

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer H (eds) The Prokaryotes, 2nd edn. Springer-Verlag, Berlin Heidelberg New York, pp 3352–3378

    Google Scholar 

  • Wiegel J (1981) Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31:88

    Google Scholar 

  • Yumoto I, Yamazaki K, Sawabe T, Nakano K, Kawasaki K, Ezura Y, Shinano H (1998) Bacillus horti sp. nov., a new Gram-negative alkaliphilic Bacillus. Int J Syst Bacteriol 48:565–571

    PubMed  CAS  Google Scholar 

  • Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, Suemori A (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rich Davis for performing the electron microscopy, Jean P. Euzeby for help with the correct naming of T. uzonensis. We are indebted to Elizaveta Bonch-Osmolovskaya (RAS-Moscow) and Gennadii Karpov (Petropavlovsk-kamchatkii) for logistic help for our field season and obtaining sampling permits. This research was supported by a grant through National Science Foundation Microbial Observatory Program NSF-MCB 0238407 (JW, CSR) and partially supported by the Environmental Remediation Sciences Division of the Office of Biologic and Environmental Research, US Department of Energy through the Financial Assistant Award to the University of Georgia Research Foundation (CLZ, CSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Wiegel.

Additional information

Communicated by F. Robb

The Genbank accession number for the 16S rRNA gene sequence of strain JW/WZ-YB58T is DQ221694.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Weber, C., Zhang, C.L. et al. Thermalkalibacillus uzonensis gen. nov. sp. nov, a novel aerobic alkali-tolerant thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka. Extremophiles 10, 337–345 (2006). https://doi.org/10.1007/s00792-006-0511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0511-6

Keywords

Navigation