Skip to main content
Log in

Thermophilic Bacilli growing with carbon monoxide

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Four strains of obligately thermophilic Bacilli capable of growing with carbon monoxide as a sole carbon and energy source were isolated from settling ponds of a sugar factory. Most of them could be identified as strains of Bacillus schlegelii on the basis of cell wall composition, DNA homology menaquinone and DNA base content. Growth with CO was very fast (t d =3 h) and was optimal at 65°C. No growth occurred below 50°C. As with the mesophilic carboxydotrophs, hydrogen plus carbon dioxide could also serve as autotrophic substrates. Growth of the isolates with CO depended on the presence of molybdenum in the growth medium. This suggested CO oxidase in the newly isolated Bacilli being a molybdenum hydroxylase similar to the enzymes from the mesophilic carboxydotrophs. Some data characterizing the CO-oxidizing activity in extracts of the thermophilic isolates are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragno M (1978) Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol Lett 3:13–15

    Article  Google Scholar 

  • Bell JM, Colby J (1983) CO: acceptor-oxidoreductase from Pseudomonas thermocarboxydovorans. Soc Gen Microbiol Quart 10:M9

    Google Scholar 

  • Boehringer Mannheim Corporation (1973) Boehringer Informationen. Boehringer Mannheim Corporation, Mannheim, FRG

    Google Scholar 

  • Bowien B, Mayer F, Codd PM, Schlegel HG (1976) Purification, some properties and quaternary structure of the d-ribulose 1,5-diphosphate carboxylase of Alcaligenes eutrophus. Arch Microbiol 110:157–166

    PubMed  Google Scholar 

  • Bradley SG, Mordgarski M (1976) Association of polydeoxyribonucleotides of DNA from nocardiaform bacteria In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of Nocardia, vol 12. Academic Press, New York London, pp 310–336

    Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed  Google Scholar 

  • Cypionka H, Meyer O (1982) Influence of carbon monoxide on growth and respiration of carboxydobacteria and other aerobic organisms. FEMS Microbiol Lett 15:209–214

    Google Scholar 

  • Cypionka H, Meyer O, Schlegel HG (1980) Physiological characteristics of various species of strains of carboxydobacteria. Arch Microbiol 127:301–307

    Google Scholar 

  • DeLey J (1970) Reexamination of the association between melting point, buoyant density and chemical base composition of DNA. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • DeLey J, Cattoir H, Reynaerts A (1970) The quantitation measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12:133–142

    PubMed  Google Scholar 

  • Diekert G, Graf EG, Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:117–120

    Google Scholar 

  • Eckard T (1978) A rapid method for the identification of plasmid DNA in bacteria. Plasmid 1:584–588

    PubMed  Google Scholar 

  • Ghysen JM (1968) Use of bacteriolytic enzymes in determination of cell wall structure and their role in cell metabolism. Bacteriol Rev 32:425–464

    PubMed  Google Scholar 

  • Gibson T, Gordon RE (1974) Genus Bacillus In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore, pp 529–550

    Google Scholar 

  • Gordon RE, Haynes WL, Pang CHN (1973) The genus Bacillus. Agriculture Handbook 427, Agriculture Research Service, Unites States Department of Agriculture, USA

    Google Scholar 

  • Kado CJ, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    PubMed  Google Scholar 

  • Kalnowski G (1980) Physiologische Untersuchung der Kohlenmonoxid-Oxidation und des chemolithoautotrophen Wachstums an zwei neu isolierten Carboxydobakterien. PhD thesis. Technische Univ, Braunschweig, FRG, p 197

    Google Scholar 

  • Kiessling M, Meyer O (1982) Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava. FEMS Microbiol Lett 13:333–338

    Article  Google Scholar 

  • Kim YM, Hegeman GD (1981) Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena. J Bacteriol 148:904–911

    PubMed  Google Scholar 

  • Kim YM, Hegeman GD (1983) Oxidation of carbon monoxide by bacteria. Int Rev Cytol 81:1–32

    PubMed  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones using reverse phase (RP 18) and a silver loaded ion exchanger as stationary phase. J Liquid Chromat 5:2359–2367

    Google Scholar 

  • Lyons CM, Williams E, Colby J (1982) Chracterization of novel strains of carboxydobacteria. Soc Gen Microbiol Quart 9: M7

    Google Scholar 

  • Marmur J, Doty P (1961) Determination of the base composition of DNA from its thermal denaturation temperature. J Mol Biol 5:109–118

    Google Scholar 

  • Meyer O (1982) Chemical and spectral properties of carbon monoxide: methylene blue oxidoreductase. J Biol Chem 257:1333–1341

    PubMed  Google Scholar 

  • Meyer O, Rohde M (1984) Enzymology and bioenergetics of carbon monoxide-oxidizing bacteria. In: 4th International symposium on microbial growth on C1 compounds, published by the ASM (in press)

  • Meyer O, Schlegel HG (1978) Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans. Kistner comb nov. Arch Microbiol 118:35–43

    PubMed  Google Scholar 

  • Meyer O, Schlegel HG (1979) Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans. J Bacteriol 137: 811–817

    PubMed  Google Scholar 

  • Meyer O, Schlegel HG (1980) Carbon monoxide:methylene blue oxidoreductase from Pseudomonas carboxydovorans. J Bacteriol 141:74–80

    PubMed  Google Scholar 

  • Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxideoxidizing bacteria. Annu Rev Microbiol 37:227–310

    Article  Google Scholar 

  • Nozhevnikova AH, Yurganov LN (1978) Microbiological aspects or regulating the carbon monoxide content in the earth's atmosphere. In: Alexander M (ed) Advances in microbial ecology, vol 2. Plenum Press, New York, pp 203–238

    Google Scholar 

  • Pinkwart M, Schneider K, Schlegel HG (1983) The hydrogenase of a thermophilic hydrogen-oxidizing bacterium. FEMS Microbiol Lett 17:137–141

    Article  Google Scholar 

  • Roussos GG (1967) Xanthine oxidase from bovine small intestine. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 12. Academic Press, New York London, pp 5–16

    Google Scholar 

  • Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing hydrogen. J Gen Microbiol 115:333–341

    Google Scholar 

  • Schleifer KH, Kandler O (1967a) Zur chemischen Zusammensetzung der Streptokokken I. Arch Microbiol 57:335–364

    Google Scholar 

  • Schleifer KH, Kandler O (1967b) Zur chemischen Zusammensetzung der Streptokokken II. Arch Microbiol 57:365–381

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implication. Bacteriol Rev 36:407–476

    PubMed  Google Scholar 

  • Schmidt K, Liaaen-Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Microbiol 46:117–126

    Google Scholar 

  • Siebert K, Schobert P, Bowien B (1980) Purification, some catalytic and molecular properties of phosphoribulokinase from Alcaligenes eutrophus. Biochem Biophys Acta 658:35–44

    Google Scholar 

  • Sleyter UB (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly and function. Int Rev Cytol 53:1–64

    PubMed  Google Scholar 

  • Smith LDS, Gordon RE, Clark FE (1952) Aerobic spore-forming bacteria. United States Agriculture Monograph 16, Washington DC, USA

  • Stenesk J, Roe BA, Snyder TL (1968) Studies of deoxyribonucleic acid from mesophilic and thermophilic bacteria. Biochem Biophys Acta 161:442–454

    PubMed  Google Scholar 

  • Thauer RK, Brandis-Heep A, Diekert G, Gilles HH, Graf EG, Jaenchen R, Schönheit P (1983) Drei neue Nickelenzyme aus anaeroben Bakterien. Naturwissenschaften 70:60–64

    Google Scholar 

  • Veeger C, DerVartanian DV, Zeylemaker WP (1969) Succinate dehydrogenase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 13. Academic Press, New York London, pp 81–90

    Google Scholar 

  • Wolf J, Sharp RJ (1981) Taxonomic and related aspects of thermophiles within the genus Bacillus. In: Berkely RCW, Goodfellow M (eds) The aerobic spore-forming bacteria: classification and identification. Academic Press, New York London

    Google Scholar 

  • Zavarzin GA, Nozhevnikova AN (1977) Aerobic carboxydobacteria. Microbiol Ecol 3:305–326

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is respectively dedicated to Professor Dr. H. G. Schlegel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, B., Meyer, O. Thermophilic Bacilli growing with carbon monoxide. Arch. Microbiol. 139, 402–408 (1984). https://doi.org/10.1007/BF00408387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408387

Key words

Navigation