Skip to main content
Log in

Multicopper oxidases: intramolecular electron transfer and O2 reduction

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The multicopper oxidases are an intriguing, widespread family of enzymes that catalyze the reduction of O2 to water by a variety of single-electron and multiple-electron reducing agents. The structure and properties of the copper binding sites responsible for the latter chemical transformations have been studied for over 40 years and a detailed picture is emerging. This review focuses particularly on the kinetics of internal electron transfer between the type 1 (blue) copper site and the trinuclear center, as well as on the nature of the intermediates formed in the oxygen reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thony-Meyer L (2013) PLoS ONE 8:e65633. doi:10.1371/journal.pone.0065633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Messerschmidt A (1993) In: Karlin K, Tyeklar Z (eds) Bioinorganic chemistry of copper. Chapman & Hall, New York, pp 471–484

  3. Farver O, Tepper AWJW, Wherland S, Canters GW, Pecht I (2009) J Am Chem Soc 131:18226–18227. doi:10.1021/ja908793d

    Article  CAS  PubMed  Google Scholar 

  4. Skalova T, Dohnalek J, Ostergaard LH, Osteryaard PR, Kolenko P, Duskova J, Stepankova A, Hasek J (2009) J Mol Biol 385:1165–1178. doi:10.1016/j.jmb.2008.11.024

    Article  CAS  PubMed  Google Scholar 

  5. Komori H, Miyazaki K, Higuchi Y (2009) FEBS Lett 583:1189–1195. doi:10.1016/j.febslet.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC (2009) J Biol Chem 284:10174–10180. doi:10.1074/jbc.M900179200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lindley PF, Card G, Zaitseva I, Zaitsev V, Reinhammar B, Selin-Lindgren E, Yoshida K (1997) J Biol Inorg Chem 2:454–463. doi:10.1007/s007750050156

    Article  CAS  Google Scholar 

  8. Nakamura K, Go N (2005) Cell Mol Life Sci 62:2050–2066. doi:10.1007/s00018-004-5076-5

    Article  CAS  PubMed  Google Scholar 

  9. Rydén LG, Hunt LT (1993) J Mol Evol 36:41–66. doi:10.1007/bf02407305

    Article  PubMed  Google Scholar 

  10. Liu B, Chen Y, Doukov T, Soltis SM, Stout CD, Fee JA (2009) Biochemistry 48:820–826. doi:10.1021/bi801759a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) J Biol Chem 279:23472–23476. doi:10.1074/jbc.M314000200

    Article  CAS  PubMed  Google Scholar 

  12. Ferraroni M, Matera I, Chernykh A, Kolomytseva M, Golovleva LA, Scozzafava A, Briganti F (2012) J Inorg Biochem 111:203–209. doi:10.1016/j.jinorgbio.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  13. Messerschmidt A, Rossi A, Ladenstein R, Huber R, Bolognesi M, Gatti G, Marchesini A, Petruzzelli R, Finazziagro A (1989) J Mol Biol 206:513–529. doi:10.1016/0022-2836(89)90498-1

    Article  CAS  PubMed  Google Scholar 

  14. Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazziagro A (1992) J Mol Biol 224:179–205. doi:10.1016/0022-2836(92)90583-6

    Article  CAS  PubMed  Google Scholar 

  15. Messerschmidt A, Luecke H, Huber R (1993) J Mol Biol 230:997–1014. doi:10.1006/jmbi.1993.1215

    Article  CAS  PubMed  Google Scholar 

  16. Solomon EI, Szilagyi RK, George SD, Basumallick L (2004) Chem Rev 104:419–458. doi:10.1021/cr0206317

    Article  CAS  PubMed  Google Scholar 

  17. Climent V, Zhang JD, Friis EP, Ostergaard LH, Ulstrup J (2012) J Phys Chem C 116:1232–1243. doi:10.1021/jp2086285

    Article  CAS  Google Scholar 

  18. Messerschmidt A, Huber R (1990) Eur J Biochem 187:341–352. doi:10.1111/j.1432-1033.1990.tb15311.x

    Article  CAS  PubMed  Google Scholar 

  19. Onuchic JN, Beratan DN, Winkler JR, Gray HB (1992) Annu Rev Biophys Biomol Struct 21:349–377

    Article  CAS  PubMed  Google Scholar 

  20. Meyer TE, Marchesini A, Cusanovich MA, Tollin G (1991) Biochemistry 30:4619–4623. doi:10.1021/bi00232a037

    Article  CAS  PubMed  Google Scholar 

  21. Andréasson L-E, Reinhammar B (1979) Biochim Biophys Acta 568:145–156. doi:10.1016/0005-2744(79)90282-1

    Google Scholar 

  22. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322. doi:10.1016/0304-4173(85)90014-x

    Article  CAS  Google Scholar 

  23. Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372. doi:10.1017/s0033583503003913

    Article  CAS  PubMed  Google Scholar 

  24. Farver O, Wherland S, Koroleva O, Loginov DS, Pecht I (2011) FEBS J 278:3463–3471. doi:10.1111/j.1742-4658.2011.08268.x

    Article  CAS  PubMed  Google Scholar 

  25. Farver O, Pecht I (1991) Mol Cryst Liq Cryst 194:215–224. doi:10.1080/00268949108041167

    Article  CAS  Google Scholar 

  26. Farver O, Bendahl L, Skov LK, Pecht I (1999) J Biol Chem 274:26135–26140. doi:10.1074/jbc.274.37.26135

    Article  CAS  PubMed  Google Scholar 

  27. Farver O, Pecht I (1992) Proc Natl Acad Sci USA 89:8283–8287. doi:10.1073/pnas.89.17.8283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Farver O, Wherland S, Pecht I (1994) J Biol Chem 269:22933–22936

    CAS  PubMed  Google Scholar 

  29. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton L, Ruzgas T (2005) Biochem J 385:745–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shleev SV, Morozova O, Nikitina O, Gorshina ES, Rusinova T, Serezhenkov VA, Burbaev DS, Gazaryan IG, Yaropolov AI (2004) Biochimie 86:693–703. doi:10.1016/j.biochi.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  31. Tepper A, Aartsma TJ, Canters GW (2011) Faraday Discuss 148:161–171. doi:10.1039/c002585bc

    Article  CAS  PubMed  Google Scholar 

  32. Reinhammar B (1972) Biochim Biophys Acta 275:245–259. doi:10.1016/0005-2728(72)90045-x

    Article  CAS  PubMed  Google Scholar 

  33. Frasconi M, Favero G, Boer H, Koivula A, Mazzei F (2010) Biochim Biophys Acta 1804:899–908. doi:10.1016/j.bbapap.2009.12.018

    Article  CAS  PubMed  Google Scholar 

  34. Faraggi M, Pecht I (1973) J Biol Chem 248:3146–3149

    CAS  PubMed  Google Scholar 

  35. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Protein Sci 13:2388–2397. doi:10.1110/ps.04759104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Beratan DN, Skourtis SS, Balabin IA, Balaeff A, Keinan S, Venkatramani R, Xiao D (2009) Acc Chem Res 42:1669–1678. doi:10.1021/ar900123t

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li HT, Chang TN, Chang WC, Chen CJ, Liu MY, Gui LL, Zhang JP, An XM, Chang WR (2005) Biochem Biophys Res Commun 338:1935–1942. doi:10.1016/j.bbrc.2005.09.199

    Article  CAS  PubMed  Google Scholar 

  38. Farver O, Goldberg M, Pecht I (1980) Eur J Biochem 104:71–77. doi:10.1111/j.1432-1033.1980.tb04401.x

    Article  CAS  PubMed  Google Scholar 

  39. Kyritsis P, Messerschmidt A, Huber R, Salmon GA, Sykes AG (1993) J Chem Soc Dalton Trans 731–735. doi:10.1039/dt9930000731

  40. Kroneck PMH, Armstrong FA, Merkle H, Marchesini A (1982) Adv Chem Ser 200:223–248

    Article  CAS  Google Scholar 

  41. Nakamura T, Makino N, Ogura Y (1968) J Biochem (Tokyo) 64:189–195

    CAS  Google Scholar 

  42. Kataoka K, Sugiyama R, Hirota S, Inoue M, Urata K, Minagawa Y, Seo D, Sakurai T (2009) J Biol Chem 284:14405–14413. doi:10.1074/jbc.M808468200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Quintanar L, Stoj C, Wang TP, Kosman DJ, Solomon EJ (2005) Biochemistry 44:6081–6091. doi:10.1021/bi047379c

    Article  CAS  PubMed  Google Scholar 

  44. Silva CS, Damas JM, Chen Z, Brissos V, Martins LO, Soares CM, Lindley PF, Bento I (2012) Acta Crystallogr Sect D Biol Crystallogr 68:186–193. doi:10.1107/s0907444911054503

    Article  CAS  Google Scholar 

  45. Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM (2010) BMC Struct Biol 10. doi:10.1186/1472-6807-10-28

  46. Farver O, Pecht I (2011) Coord Chem Rev 255:757–773. doi:10.1016/j.ccr.2010.08.005

    Article  CAS  Google Scholar 

  47. Kosman DJ (2010) J Biol Inorg Chem 15:15–28. doi:10.1007/s00775-009-0590-9

    Article  CAS  PubMed  Google Scholar 

  48. Rulisek L, Ryde U (2013) Coord Chem Rev 257:445–458. doi:10.1016/j.ccr.2012.04.019

    Article  CAS  Google Scholar 

  49. Tepper AWJW, Milikisyants S, Sottini S, Vijgenboom E, Groenen EJJ, Canters GW (2009) J Am Chem Soc 131:11680. doi:10.1021/ja900751c

    Article  CAS  PubMed  Google Scholar 

  50. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) Proc Natl Acad Sci USA 102:15459–15464. doi:10.1073/pnas.0506227102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Andreasson LE, Brändén R, Reinhammar B (1976) Biochim Biophys Acta 438:370–379. doi:10.1016/0005-2744(76)90254-0

    Article  CAS  PubMed  Google Scholar 

  52. Brändén R, Deinum J, Coleman M (1978) FEBS Lett 89:180–182. doi:10.1016/0014-5793(78)80550-x

    Article  PubMed  Google Scholar 

  53. Aasa R, Brändén R, Deinum J, Malmström BG, Reinhammar B, Vänngård T (1976) FEBS Lett 61:115–119. doi:10.1016/0014-5793(76)81016-2

    Article  CAS  PubMed  Google Scholar 

  54. Aasa R, Brändén R, Deinum J, Malmström BG, Reinhammar B, Vänngård T (1976) Biochem Biophys Res Commun 70:1204–1209. doi:10.1016/0006-291x(76)91030-5

    Article  CAS  PubMed  Google Scholar 

  55. Farver O, Goldberg M, Lancet D, Pecht I (1976) Biochem Biophys Res Commun 73:494–500. doi:10.1016/0006-291x(76)90734-8

    Article  CAS  PubMed  Google Scholar 

  56. Farver O, Goldberg M, Pecht I (1978) FEBS Lett 94:383–386. doi:10.1016/0014-5793(78)80983-1

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg M, Farver O, Pecht I (1980) J Biol Chem 255:7353–7361

    CAS  PubMed  Google Scholar 

  58. Farver O, Frank P, Pecht I (1982) Biochem Biophys Res Commun 108:273–278. doi:10.1016/0006-291x(82)91862-9

    Article  CAS  PubMed  Google Scholar 

  59. Brändén R, Deinum J (1977) FEBS Lett 73:144–146. doi:10.1016/0014-5793(77)80967-8

    Article  PubMed  Google Scholar 

  60. Sundaram UM, Zhang HH, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:12525–12540. doi:10.1021/ja972039i

    Article  CAS  Google Scholar 

  61. Brissos V, Chen ZJ, Martins LO (2012) Dalton Trans 41:6247–6255. doi:10.1039/c2dt12067d

    Article  CAS  PubMed  Google Scholar 

  62. Augustine AJ, Kjaergaard C, Qayyum M, Ziegler L, Kosman DJ, Hodgson KO, Hedman B, Solomon EI (2010) J Am Chem Soc 132:6057–6067. doi:10.1021/ja909143d

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6442. doi:10.1021/ja00255a032

    Article  CAS  Google Scholar 

  64. Farver O, Pecht I (1979) FEBS Lett 108:436–438

    Article  CAS  PubMed  Google Scholar 

  65. Kjaergaard CH, Qayyum MF, Augustine AJ, Ziegler L, Kosman DJ, Hodgson KO, Hedman B, Solomon EI (2013) Biochemistry 52:3702–3711. doi:10.1021/bi4002826

    Article  CAS  PubMed  Google Scholar 

  66. Palmer AE, Quintanar L, Severance S, Wang TP, Kosman DJ, Solomon EI (2002) Biochemistry 41:6438–6448. doi:10.1021/bi011979j

    Article  CAS  PubMed  Google Scholar 

  67. Chalupsky J, Neese F, Solomon EI, Ryde U, Rulisek L (2006) Inorg Chem 45:11051–11059. doi:10.1021/ic0619512

    Article  CAS  PubMed  Google Scholar 

  68. David E, Heppner DE, Kjaergaard CH, Solomon EI (2013) J Am Chem Soc 135:12212–12215. doi:10.1021/ja4064525

    Article  Google Scholar 

  69. Marchesini A, Kroneck PMH (1979) Eur J Biochem 101:65–76. doi:10.1111/j.1432-1033.1979.tb04217.x

    Article  CAS  PubMed  Google Scholar 

  70. Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dalton Trans 3507–3513. doi:10.1039/b504806k

  71. Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) BMC Struct Biol 7:60. doi:10.1186/1472-6807-7-60

  72. Antorini M, Herpoël-Gimbert I, Choinowski T, Sigoillot J-C, Asther M, Winterhalter K, Piontek K (2002) Biochim Biophys Acta 1594:109–114. doi:10.1016/S0167-4838(01)00289-8

    Article  CAS  PubMed  Google Scholar 

  73. Goldberg M, Vuk Pavlovic S, Pecht I (1980) Biochemistry 19:5181–5189. doi:10.1021/bi00564a005

    Article  CAS  PubMed  Google Scholar 

  74. Gupta A, Nederlof I, Sottini S, Tepper AWJW, Groenen EJJ, Thomassen EAJ, Canters GW (2012) J Am Chem Soc 134:18213–18216. doi:10.1021/ja3088604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

O.F. thanks the Kimmelman Center for Biomolecular Structure and Assembly at the Weizmann Institute of Science for generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Pecht.

Additional information

Responsible Editors: Lucia Banci and Claudio Luchinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wherland, S., Farver, O. & Pecht, I. Multicopper oxidases: intramolecular electron transfer and O2 reduction. J Biol Inorg Chem 19, 541–554 (2014). https://doi.org/10.1007/s00775-013-1080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1080-7

Keywords

Navigation