Skip to main content
Log in

Electron transfer and reaction mechanism of laccases

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Laccases are part of the family of multicopper oxidases (MCOs), which couple the oxidation of substrates to the four electron reduction of O2 to H2O. MCOs contain a minimum of four Cu’s divided into Type 1 (T1), Type 2 (T2), and binuclear Type 3 (T3) Cu sites that are distinguished based on unique spectroscopic features. Substrate oxidation occurs near the T1, and electrons are transferred approximately 13 Å through the protein via the Cys-His pathway to the T2/T3 trinuclear copper cluster (TNC), where dioxygen reduction occurs. This review outlines the electron transfer (ET) process in laccases, and the mechanism of O2 reduction as elucidated through spectroscopic, kinetic, and computational data. Marcus theory is used to describe the relevant factors which impact ET rates including the driving force, reorganization energy, and electronic coupling matrix element. Then, the mechanism of O2 reaction is detailed with particular focus on the intermediates formed during the two 2e reduction steps. The first 2e step forms the peroxide intermediate, followed by the second 2e step to form the native intermediate, which has been shown to be the catalytically relevant fully oxidized form of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    CAS  PubMed  Google Scholar 

  2. Giardina P, Faraco V, Pezzella C et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. doi:10.1007/s00018-009-0169-1

    CAS  PubMed  Google Scholar 

  3. Solomon EI, Heppner DE, Johnston EM et al (2014) Copper active sites in biology. Chem Rev 114:3659–3853. doi:10.1021/cr400327t

    CAS  PubMed  Google Scholar 

  4. Messerschmidt A (1997) Multi-copper oxidases. World Scientific, River Edge

    Google Scholar 

  5. Shi X, Stoj C, Romeo A et al (2003) Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J Biol Chem 278:50309–50315. doi:10.1074/jbc.M307019200

    CAS  PubMed  Google Scholar 

  6. Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426. doi:10.1016/S0014-5793(03)01218-3

    CAS  PubMed  Google Scholar 

  7. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458. doi:10.1146/annurev.nutr.22.012502.114457

    CAS  PubMed  Google Scholar 

  8. Messerschmidt A (1998) Metal sites in small blue copper proteins, blue copper oxidases and vanadium-containing enzymes. Struct Bond 90:37–68

    CAS  Google Scholar 

  9. O’Malley DM, Whetten R, Bao W et al (1993) The role of laccase in lignification. Plant J 4:751–757

    Google Scholar 

  10. Leonowicz A, Cho N-S, Luterek J et al (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    CAS  PubMed  Google Scholar 

  11. Mayer AM, Staples RC (2002) Laccase : new functions for an old enzyme. Phytochemistry 60:551–565. doi:10.1016/S0031-9422(02)00171-1

    CAS  PubMed  Google Scholar 

  12. Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30:215–242. doi:10.1111/j.1574-4976.2005.00010.x

    CAS  PubMed  Google Scholar 

  13. Reinhammar BRM, Vanngard TI (1971) The electron-accepting sites in rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. Eur J Biochem 18:463–468

    CAS  PubMed  Google Scholar 

  14. Dooley DM, Rawlings J, Dawson JH et al (1979) Spectroscopic studies of rhus vernicifera and polyporus versicolor laccase. electronic structures of the copper sites. J Am Chem Soc 101:5038–5046

    CAS  Google Scholar 

  15. Petersen LCHR, Degn H (1978) Steady-state kinetics of laccase from rhus vernicifera. Biochim Biophys Acta 526:85–92

    CAS  PubMed  Google Scholar 

  16. Johnson DL, Thompson JL, Brinkmann SM et al (2003) Electrochemical characterization of purified Rhus vernicifera laccase: voltammetric evidence for a sequential four-electron transfer. Biochemistry 42:10229–10237. doi:10.1021/bi034268p

    CAS  PubMed  Google Scholar 

  17. Givaudan A, Effosse A, Faure D et al (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    CAS  Google Scholar 

  18. Sharma P, Goel R, Capalash N (2006) Bacterial laccases. World J Microbiol Biotechnol 23:823–832. doi:10.1007/s11274-006-9305-3

    Google Scholar 

  19. Zoppellaro G, Sakurai T, Huang H (2001) A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. J Biochem 129:949–953

    CAS  PubMed  Google Scholar 

  20. Durand F, Kjaergaard CH, Suraniti E et al (2012) Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens Bioelectron 35:140–146. doi:10.1016/j.bios.2012.02.033

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Solomon EI (2006) Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. Inorg Chem 45:8012–8025. doi:10.1021/ic060450d

    CAS  PubMed  Google Scholar 

  22. Malmström BG, Reinhammar B, Vänngård T (1968) Two forms of copper (II) in fungal laccase. Biochim Biophys Acta 156:67–76. doi:10.1016/0304-4165(68)90105-0

    PubMed  Google Scholar 

  23. Malmström BG, Reinhammar B, Vänngård T et al (1970) The state of copper in stellacyanin and laccase from the lacquer tree Rhus vernicifera. Biochim Biophys Acta 205:48–57. doi:10.1016/0005-2728(70)90060-5

    PubMed  Google Scholar 

  24. Cole JL, Clark PA, Solomon EI (1990) Spectroscopic and chemical studies of the laccase trinuclear copper active site: geometric and electronic structure. J Am Chem Soc 112:9534–9548

    CAS  Google Scholar 

  25. Gray HB, Malmström BG, Williams RJP (2000) Copper coordination in blue proteins. J Biol Inorg Chem 5:551–559. doi:10.1007/s007750000146

    CAS  PubMed  Google Scholar 

  26. Sakurai T, Kataoka K (2007) Structure and function of type I copper in multicopper oxidases. Cell Mol Life Sci 64:2642–2656. doi:10.1007/s00018-007-7183-y

    CAS  PubMed  Google Scholar 

  27. Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (2004) Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem Rev 104:419–458. doi:10.1021/cr0206317

    CAS  PubMed  Google Scholar 

  28. Quintanar L, Yoon J, Aznar CP et al (2005) Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase : nature of its coordination unsaturation. J Am Chem Soc 127:13832–13845

    CAS  PubMed  Google Scholar 

  29. Quintanar L, Stoj C, Wang T-P et al (2005) Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p. Biochemistry 44:6081–6091. doi:10.1021/bi047379c

    CAS  PubMed  Google Scholar 

  30. Augustine AJ, Quintanar L, Stoj CS et al (2007) Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: the role of protons in reductive cleavage of the O–O bond in the multicopper oxidase Fet3p. J Am Chem Soc 129:13118–13126. doi:10.1021/ja073905m

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Sykes AG (1991) Active-site properties of the blue copper proteins. Adv Inorg Chem 36

  32. Canters GW, Gilardi G (1993) Engineering type 1 copper sites in proteins. FEBS Lett 325:39–48. doi:10.1016/0014-5793(93)81410-2

    CAS  PubMed  Google Scholar 

  33. Solomon E, Lowery MD (1993) Electronic structure contributions to function in bioinorganic chemistry. Science 259:1575–1581

    CAS  PubMed  Google Scholar 

  34. Wherland S, Farver O, Pecht I (2014) Multicopper oxidases: intramolecular electron transfer and O2 reduction. J Biol Inorg Chem 19:541–554. doi:10.1007/s00775-013-1080-7

    CAS  PubMed  Google Scholar 

  35. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  36. Warren JJ, Lancaster KM, Richards JH, Gray HB (2012) Inner- and outer-sphere metal coordination in blue copper proteins. J Inorg Biochem 115:119–126. doi:10.1016/j.jinorgbio.2012.05.002

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Olsson MH, Ryde U, Roos BO (1998) Quantum chemical calculations of the reorganization energy of blue-copper proteins. Protein Sci 7:2659–2668. doi:10.1002/pro.5560071220

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Ryde U, Olsson MHM (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quantum Chem 81:335–347

    CAS  Google Scholar 

  39. Xu F, Berka RM, Wahleithner JA et al (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334:63–70

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928. doi:10.1074/jbc.272.2.924

    CAS  PubMed  Google Scholar 

  41. Schneider P, Caspersen MB, Mondorf K et al (1999) Characterization of a Coprinus cinereus laccase. Enzym Microb Technol 25:502–508. doi:10.1016/S0141-0229(99)00085-X

    CAS  Google Scholar 

  42. Li H, Webb SP, Ivanic J, Jensen JH (2004) Determinants of the relative reduction potentials of type-1 copper sites in proteins. J Am Chem Soc 126:8010–8019. doi:10.1021/ja049345y

    CAS  PubMed  Google Scholar 

  43. Battistuzzi G, Bellei M, Leonardi A et al (2005) Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. J Biol Inorg Chem 10:867–873. doi:10.1007/s00775-005-0035-z

    CAS  PubMed  Google Scholar 

  44. Durão P, Bento I, Fernandes AT et al (2006) Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11:514–526. doi:10.1007/s00775-006-0102-0

    PubMed  Google Scholar 

  45. Xu F, Palmer AE, Yaver DS et al (1999) Targeted mutations in a trametes villosa laccase : axial perturbations of the T1 copper. J Biol Chem 274:12372–12375

    CAS  PubMed  Google Scholar 

  46. Lacroix LB, Randall DW, Nersissian AM et al (1998) Spectroscopic and geometric variations in perturbed blue copper centers : electronic structures of stellacyanin and cucumber basic protein. J Am Chem Soc 120:9621–9631

    CAS  Google Scholar 

  47. Basumallick L, Szilagyi RK, Zhao Y et al (2003) Spectroscopic studies of the met182thr mutant of nitrite reductase : role of the axial ligand in the geometric and electronic structure of blue and green copper sites. J Am Chem Soc 125:14784–14792

    CAS  PubMed  Google Scholar 

  48. Vallee BL, Williams RJP (1967) Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci USA 59:498–505

    Google Scholar 

  49. Ghosh S, Xie X, Dey A et al (2009) Thermodynamic equilibrium between blue and green copper sites and the role of the protein in controlling function. Proc Natl Acad Sci USA 106:4969–4974. doi:10.1073/pnas.0900995106

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Xie X, Hadt RG, Pauleta SR et al (2009) A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: protein constraints on the blue Cu site. J Inorg Biochem 103:1307–1313. doi:10.1016/j.jinorgbio.2009.04.012

    CAS  PubMed  Google Scholar 

  51. Marshall NM, Garner DK, Wilson TD et al (2009) Rationally tuning the reduction potential of a single cupredoxin beyond the natural range. Nature 462:113–116. doi:10.1038/nature08551

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Berry SM, Baker MH, Reardon NJ (2010) Reduction potential variations in azurin through secondary coordination sphere phenylalanine incorporations. J Inorg Biochem 104:1071–1078. doi:10.1016/j.jinorgbio.2010.06.004

    CAS  PubMed  Google Scholar 

  53. Hong G, Ivnitski DM, Johnson GR et al (2011) Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: insight from a combination of first principles and empirical molecular dynamics simulations. J Am Chem Soc 133:4802–4809. doi:10.1021/ja105586q

    CAS  PubMed  Google Scholar 

  54. Hadt RG, Sun N, Marshall NM et al (2012) Spectroscopic and DFT studies of second-sphere variants of the type 1 copper site in azurin: covalent and nonlocal electrostatic contributions to reduction potentials. J Am Chem Soc 134:16701–16716. doi:10.1021/ja306438n

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Reiss R, Ihssen J, Richter M et al (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE 8:e65633. doi:10.1371/journal.pone.0065633

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Hofer C, Schlosser D (1999) Novel enzymatic oxidation of Mn2+‡ to Mn 3+‡ catalyzed by a fungal laccase. FEBS Lett 451:186–190

    CAS  PubMed  Google Scholar 

  57. Gorbacheva M, Morozova O, Shumakovich G et al (2009) Enzymatic oxidation of manganese ions catalysed by laccase. Bioorg Chem 37:1–5. doi:10.1016/j.bioorg.2008.09.002

    CAS  PubMed  Google Scholar 

  58. Ricklefs E, Winkler N, Koschorreck K, Urlacher VB (2014) Expanding the laccase-toolbox: a laccase from Corynebacterium glutamicum with phenol coupling and cuprous oxidase activity. J Biotechnol. doi:10.1016/j.jbiotec.2014.05.031

    PubMed  Google Scholar 

  59. Bertrand T, Jolivalt C, Briozzo P et al (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    CAS  PubMed  Google Scholar 

  60. Enguita FJ, Marçal D, Martins LO et al (2004) Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 279:23472–23476. doi:10.1074/jbc.M314000200

    CAS  PubMed  Google Scholar 

  61. Matera I, Gullotto A, Tilli S et al (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chim Acta 361:4129–4137. doi:10.1016/j.ica.2008.03.091

    CAS  Google Scholar 

  62. Polyakov KM, Fedorova TV, Stepanova EV et al (2009) Structure of native laccase from Trametes hirsuta at 1.8 a resolution. Acta Crystallogr D Biol Crystallogr 65:611–617. doi:10.1107/S0907444909011950

    CAS  PubMed  Google Scholar 

  63. Hakulinen N, Kiiskinen L-L, Kruus K et al (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605. doi:10.1038/nsb823

    CAS  PubMed  Google Scholar 

  64. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614. doi:10.1021/bi952971a

    CAS  PubMed  Google Scholar 

  65. Xu F, Shin W, Brown SH et al (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  66. Quintanar L, Gebhard M, Wang T-P et al (2004) Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity. J Am Chem Soc 126:6579–6589. doi:10.1021/ja049220t

    CAS  PubMed  Google Scholar 

  67. Taylor AB, Stoj CS, Ziegler L et al (2005) The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Proc Natl Acad Sci USA 102:15459–15464. doi:10.1073/pnas.0506227102

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Stoj CS, Augustine AJ, Zeigler L et al (2006) Structural basis of the ferrous iron specificity of the yeast ferroxidase, Fet3p. Biochemistry 45:12741–12749. doi:10.1021/bi061543+

    CAS  PubMed  Google Scholar 

  69. Kosman DJ (2008) Substrate entasis and electronic coupling elements in electron transfer from Fe in a multicopper ferroxidase. Inorganica Chim Acta 361:844–849. doi:10.1016/j.ica.2007.10.013

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Penfield KW, Gewirth AA, Solomon EI (1985) Electronic structure and bonding of the blue copper site in plastocyanin. J Am Chem Soc 107:4519–4529. doi:10.1021/ja00301a024

    CAS  Google Scholar 

  71. Gewirth AA, Solomon EI (1988) Electronic structure of plastocyanin: excited state spectral features. J Am Chem Soc 110:3811–3819

    CAS  Google Scholar 

  72. Solomon EI, Penfield KW, Gewirth AA et al (1996) Electronic structure of the oxidized and reduced blue copper sites: contributions to the electron transfer pathway, reduction potential, and geometry. Inorganica Chim Acta 243:67–78

    CAS  Google Scholar 

  73. George SJ, Lowery MD, Solomon EI, Cramer SP (1993) Copper L-edge spectral studies: a direct experimental probe of the ground-state covalency in the blue copper site in plastocyanin. J Am Chem Soc 115:2968–2969

    CAS  Google Scholar 

  74. Gewirth AA, Cohen SL, Schugar HJ, Solomon EI (1987) Spectroscopic and theoretical studies of the unusual epr parameters of distorted tetrahedral cupric sites: correlations to x-ray spectral features of core levels. Inorg Chem 26:1133–1146

    CAS  Google Scholar 

  75. Hadt RG, Gorelsky SI, Solomon EI (2014) Anisotropic covalency contributions to superexchange pathways in type one copper active sites. J Am Chem Soc. doi:10.1021/ja508361h

    Google Scholar 

  76. Farver O, Pecht I (1991) Long range electron transfer in blue copper proteins. Mol Cryst Liq Cryst 194:215–224. doi:10.1080/00268949108041167

    CAS  Google Scholar 

  77. Augustine AJ, Kragh ME, Sarangi R et al (2008) Spectroscopic studies of perturbed t1 cu sites in the multicopper oxidases saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase : allosteric coupling between the T1 and trinuclear Cu sites. Biochemistry 47:2036–2045

    CAS  PubMed  Google Scholar 

  78. Heppner DE, Kjaergaard CH, Solomon EI (2013) Molecular origin of rapid versus slow intramolecular electron. J Am Chem Soc 135:12212–12215

    CAS  PubMed  Google Scholar 

  79. Farver O, Wherland S, Koroleva O et al (2011) Intramolecular electron transfer in laccases. FEBS J 278:3463–3471. doi:10.1111/j.1742-4658.2011.08268.x

    CAS  PubMed  Google Scholar 

  80. Augustine AJ, Kjaergaard C, Qayyum M et al (2010) Systematic perturbation of the trinuclear copper cluster in the multicopper oxidases: the role of active site asymmetry in its reduction of O2 to H2O. J Am Chem Soc 132:6057–6067. doi:10.1021/ja909143d

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Blackburn NJ, Ralle M, Hassett R, Kosman DJ (2000) Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase. Biochemistry 39:2316–2324

    CAS  PubMed  Google Scholar 

  82. Morie-bebel MM, Morris MC, Menzie JL, McMillin DR (1984) A mixed-metal derivative of laccase containing Mercury(II) in the Type 1 binding site. J Am Chem Soc 106:3677–3678

    CAS  Google Scholar 

  83. Severns JC, McMillin DR (1990) Temperature and anation studies of the Type 2 site in Rhus vernicifera laccase. Biochemistry 29:8592–8597

    CAS  PubMed  Google Scholar 

  84. Reinhammar B (1972) Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim Biophys Acta 275:245–259

    CAS  PubMed  Google Scholar 

  85. Fee JA, Malkin R, Malmstrom BG, Vänngard T (1969) Anaerobic oxidation-reduction titrations of fungal laccase : evidence for several high potential electron-accepting sites. J Biol Chem 244:4200–4207

    CAS  PubMed  Google Scholar 

  86. Fee JA, Malmström BG, Vanngard T (1969) the reduction of fungal laccase at high pH. Biochim Biophys Acta 197:136–142

    Google Scholar 

  87. Farver O, Pecht I (2011) Electron transfer in blue copper proteins. Coord Chem Rev 255:757–773. doi:10.1016/j.ccr.2010.08.005

    CAS  Google Scholar 

  88. Cole JL, Ballou DP, Solomon EI (1991) Spectroscopic characterization of the peroxide intermediate in the reduction of dioxygen catalyzed by the multicopper oxidases. J Am Chem Soc 113:8544–8546

    CAS  Google Scholar 

  89. Palmer AE, Quintanar L, Severance S et al (2002) Spectroscopic characterization and O2 reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p. Biochemistry 41:6438–6448

    CAS  PubMed  Google Scholar 

  90. Shin W, Sundaram UM, Cole JL et al (1996) Chemical and spectroscopic definition of the peroxide-level intermediate in the multicopper oxidases : relevance to the catalytic mechanism of dioxygen reduction to water. J Am Chem Soc 118:3202–3215

    CAS  Google Scholar 

  91. Metz M, Solomon EI (2001) dioxygen binding to deoxyhemocyanin: electronic structure and mechanism of the spin-forbidden two-electron reduction of O2. J Am Chem Soc 123:4938–4950

    CAS  PubMed  Google Scholar 

  92. Spira-solomon DJ, Solomon EI (1987) Chemical and spectroscopic studies of the coupled binuclear copper site in Type 2 depleted Rhus laccase: comparison to the hemocyanins and tyrosinase. J Am Chem Soc 109:6421–6432

    CAS  Google Scholar 

  93. Yoon J, Fujii S, Solomon EI (2009) Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Proc Natl Acad Sci USA 106:6585–6590

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Yoon J, Solomon EI (2007) Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases : insights into the reductive cleavage of the O–O bond. J Am Chem Soc 129:13127–13136

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Palmer AE, Lee SK, Solomon EI (2001) Decay of the peroxide intermediate in laccase: reductive cleavage of the O–O bond. J Am Chem Soc 123:6591–6599

    CAS  PubMed  Google Scholar 

  96. Chen Z, Durao P, Silva CS et al (2010) The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Dalt Trans 39:2875–2882. doi:10.1039/b922734b

    CAS  Google Scholar 

  97. Silva CS, Damas JM, Chen Z et al (2012) The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Acta Crystallogr D Biol Crystallogr 68:186–193. doi:10.1107/S0907444911054503

    CAS  PubMed  Google Scholar 

  98. Bukh C, Lund M, Bjerrum MJ (2006) Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. J Inorg Biochem 100:1547–1557. doi:10.1016/j.jinorgbio.2006.05.007

    CAS  PubMed  Google Scholar 

  99. Aasa R, Brändén R, Deinum J et al (1976) A paramagnetic intermediate in the reduction of oxygen by reduced laccase. FEBS Lett 61:115–119

    CAS  PubMed  Google Scholar 

  100. Lee S-K, George SD, Antholine WE et al (2002) Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J Am Chem Soc 124:6180–6193

    CAS  PubMed  Google Scholar 

  101. Yoon J, Solomon EI (2005) Ground-state electronic and magnetic properties of a mu3-oxo-bridged trinuclear Cu(II) complex: correlation to the native intermediate of the multicopper oxidases. Inorg Chem 44:8076–8086. doi:10.1021/ic0507870

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Yoon J, Solomon EI (2007) Electronic structures of exchange coupled trigonal trimeric Cu(II) complexes: spin frustration, antisymmetric exchange, pseudo-A terms, and their relation to O2 activation in the multicopper oxidases. Coord Chem Rev 251:379–400. doi:10.1016/j.ccr.2006.04.012

    CAS  Google Scholar 

  103. Yoon J, Liboiron BD, Sarangi R et al (2007) The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc Natl Acad Sci USA 104:13609–13614. doi:10.1073/pnas.0705137104

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Solomon EI, Augustine AJ, Yoon J (2008) O2 reduction to H2O by the multicopper oxidases. Dalton Trans 9226:3921–3932. doi:10.1039/b800799c

    Google Scholar 

  105. Branden R, Deinum J (1978) The effect of pH on the oxygen intermediate and the dioxygen reducing site in blue oxidases. Biochim Biophys Acta 524:297–304

    CAS  PubMed  Google Scholar 

  106. Branden R, Deinum J, Coleman M (1978) A mass spectrometric investigation of the reaction between 18-O2 and reduced tree laccase. FEBS Lett 89:180–182

    CAS  PubMed  Google Scholar 

  107. Clark PA, Solomon EI (1992) Magnetic circular dichroism spectroscopic definition of the intermediate produced in the reduction of dioxygen to water by native laccase. J Am Chem Soc 114:1108–1110

    CAS  Google Scholar 

  108. Kataoka K, Sugiyama R, Inoue M et al (2009) Four-electron Reduction of dioxygen by a multicopper oxidase, CueO, and roles of Asp112 and Glu506 located adjacent to the trinuclear copper center. J Biol Chem 284:14405–14413. doi:10.1074/jbc.M808468200

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Kataoka K, Kitagawa R, Inoue M et al (2005) Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Biochemistry 44:7004–7012. doi:10.1021/bi0476836

    CAS  PubMed  Google Scholar 

  110. Machonkin TE, Solomon EI (2000) The thermodynamics, kinetics, and molecular mechanism of intramolecular electron transfer in human ceruloplasmin. J Am Chem Soc 122:12547–12560

    CAS  Google Scholar 

  111. Morishita H, Kurita D, Kataoka K, Sakurai T (2014) Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase. Biochem Biophys Res Commun 450:767–772. doi:10.1016/j.bbrc.2014.06.052

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SMJ would like to thank Drs. Dave Heppner and Christian Kjaergaard for their contributions to this study and for many illuminating conversations on MCOs. EIS is indebted to all his past students and collaborators upon whose science this review is based. This research is supported by NIH Grant R01DK031450. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward I. Solomon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, S.M., Solomon, E.I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 72, 869–883 (2015). https://doi.org/10.1007/s00018-014-1826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1826-6

Keywords

Navigation