Skip to main content
Log in

Mechanistic insight from thermal activation parameters for oxygenation reactions of different substrates with biomimetic iron porphyrin models for compounds I and II

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Compound I, an oxo–iron(IV) porphyrin π-cation radical species, and its one-electron-reduced form compound II are regarded as key intermediates in reactions catalyzed by cytochrome P450. Although both reactive intermediates can be easily produced from model systems such as iron(III) meso-tetra(2,4,6-trimethylphenyl)porphyrin hydroxide by selecting appropriate reaction conditions, there are only a few thermal activation parameters reported for the reactions of compound I analogues, whereas such parameters for the reactions of compound II analogues have not been investigated so far. Our study demonstrates that ΔH and ΔS are closely related to the chemical nature of the substrate and the reactive intermediate (viz., compounds I and II) in epoxidation and C–H abstraction reactions. Although most studied reactions appear to be enthalpy-controlled (i.e., ΔH  > −TΔS ), different results were found for C–H abstractions catalyzed by compound I. Whereas the reaction with 9,10-dihydroanthracene as a substrate is also dominated by the activation enthalpy (ΔH  = 42 kJ/mol, ΔS  = 41 J/Kmol), the same reaction with xanthene shows a large contribution from the activation entropy (ΔH  = 24 kJ/mol, ΔS  = −100 J/kmol). This is of special interest since the activation barrier for entropy-controlled reactions shows a significant dependence on temperature, which can have an important impact on the relative reaction rates. As a consequence, a close correlation between bond strength and reaction rate—as commonly assumed for C–H abstraction reactions—no longer exists. In this way, this study can contribute to a proper evaluation of experimental and computational data, and to a deeper understanding of mechanistic aspects that account for differences in the reactivity of compounds I and II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2277

    Article  PubMed  CAS  Google Scholar 

  2. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  PubMed  CAS  Google Scholar 

  3. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  PubMed  CAS  Google Scholar 

  4. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110:949–1017

    Article  PubMed  CAS  Google Scholar 

  5. Shaik S, Hirao H, Kumar D (2007) Nat Prod Rep 24:533–552

    Article  PubMed  CAS  Google Scholar 

  6. Li C, Zhang L, Zhang C, Hirao H, Wu W, Shaik S (2007) Angew Chem 119:8316–8318

    Article  Google Scholar 

  7. Park MJ, Lee J, Suh Y, Kim J, Nam W (2006) J Am Chem Soc 128:2630–2634

    Article  PubMed  CAS  Google Scholar 

  8. Seo MS, Kamachi T, Kouno T, Murata K, Park MJ, Yoshizawa K, Nam W (2007) Angew Chem 119:2341–2344

    Article  Google Scholar 

  9. Shaik S, Cohen S, de Visser SP, Sharma PK, Kumar D, Kozuch S, Ogliaro F, Danovich D (2004) Eur J Inorg Chem 2:207–226

    Article  Google Scholar 

  10. Shaik S, de Visser SP, Ogliaro F, Schwarz H, Schröder D (2002) Curr Opin Chem Biol 6:556–567

    Article  PubMed  CAS  Google Scholar 

  11. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  PubMed  Google Scholar 

  12. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) J Am Chem Soc 124:2806–2817

    Article  PubMed  CAS  Google Scholar 

  13. Sharma PK, de Visser SP, Shaik S (2003) J Am Chem Soc 125:8698–8699

    Article  PubMed  CAS  Google Scholar 

  14. Schöneboom JC, Cohen S, Lin H, Shaik S, Thiel W (2004) J Am Chem Soc 126:4017–4034

    Article  PubMed  Google Scholar 

  15. Eda M, Kamachi T, Yoshizawa K, Toraya T (2002) Bull Chem Soc Jpn 75:1469–1481

    Article  CAS  Google Scholar 

  16. Shaik S, Hirao H, Kumar D (2007) Acc Chem Res 40:532–542

    Article  PubMed  CAS  Google Scholar 

  17. Cryle MJ, De Voss JJ (2006) Angew Chem 118:8401–8403

    Google Scholar 

  18. Cryle MJ, De Voss JJ (2006) Angew Chem Int Ed 45:8221–8223

    Google Scholar 

  19. de Ortiz Montellano PR, De Voss JJ (2002) Nat Prod Rep 19:477–493

    Article  Google Scholar 

  20. Franke A, Fertinger C, van Eldik R (2008) Angew Chem Int Ed 47:5238–5242

    Article  CAS  Google Scholar 

  21. Nam W, Ryu YO, Song WJ (2004) J Biol Inorg Chem 9:654–660

    Article  PubMed  CAS  Google Scholar 

  22. Nam W, Lim MH, Lee HJ, Kim C (2000) J Am Chem Soc 122:6641–6647

    Article  CAS  Google Scholar 

  23. Collman JP, Chien AS, Eberspacher TA, Brauman JI (2000) J Am Chem Soc 122:11098–11100

    Article  CAS  Google Scholar 

  24. Collman JP, Zeng L, Decrèau RA (2003) Chem Commun 2974–2975

  25. Machii K, Watanabe Y, Morishima I (1995) J Am Chem Soc 117:6691–6697

    Article  CAS  Google Scholar 

  26. Nam W, Jin SW, Lim MH, Ryu JY, Kim C (2002) Inorg Chem 41:3647–3652

    Article  PubMed  CAS  Google Scholar 

  27. Jin S, Bryson TA, Dawson JH (2004) J Biol Inorg Chem 9:644–653

    Article  PubMed  CAS  Google Scholar 

  28. Vaz ADN, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95:3555–3560

    Article  PubMed  CAS  Google Scholar 

  29. Vaz ADN, Pernecky SJ, Raner GM, Coon MJ (1996) Proc Natl Acad Sci USA 93:4644–4648

    Article  PubMed  CAS  Google Scholar 

  30. Newcomb M, Hollenberg PF, Coon MJ (2003) Arch Biochem Biophys 409:72–79

    Article  PubMed  CAS  Google Scholar 

  31. Nam W, Lim MH, Moon SK, Kim C (2000) J Am Chem Soc 122:10805–10809

    Article  CAS  Google Scholar 

  32. Adam W, Roschmann KJ, Saha-Möller CR, Seebach D (2002) J Am Chem Soc 124:5068–5073

    Article  PubMed  CAS  Google Scholar 

  33. Kang Y, Chen H, Jeong YJ, Lai W, Bae EH, Shaik S, Nam W (2009) Chem Eur J 15:10039–10046

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi A, Kurahashi T, Fujii H (2009) Inorg Chem 48:2614–2625

    Article  PubMed  CAS  Google Scholar 

  35. Collman JP, Zeng L, Brauman JI (2004) Inorg Chem 43:2672–2679

    Article  PubMed  CAS  Google Scholar 

  36. Fertinger C, Hessenauer-Ilicheva N, Franke A, van Eldik R (2009) Chem Eur J 15:13435–13440

    PubMed  CAS  Google Scholar 

  37. Fujii H, Kurahashi T, Tosha T, Yoshimura T, Kitagawa TJ (2006) Inorg Biochem 100:533–541

    Article  CAS  Google Scholar 

  38. Dolphin D, Traylor TG, Xie LY (1997) Acc Chem Res 30:251–259

    Article  CAS  Google Scholar 

  39. Nam W (2007) Acc Chem Res 40:522–531

    Article  PubMed  CAS  Google Scholar 

  40. Traylor TG, Kim C, Richards JL, Xu F, Perrin CL (1995) J Am Chem Soc 117:3468–3474

    Article  CAS  Google Scholar 

  41. Kumar D, Tahsini L, de Visser SP, Kang HY, Kim SJ, Nam W (2009) J Phys Chem A 113:11713–11722

    Article  PubMed  CAS  Google Scholar 

  42. Song WJ, Ryu YO, Song R, Nam W (2005) J Biol Inorg Chem 10:294–304

    Article  PubMed  CAS  Google Scholar 

  43. Takahashi A, Kurahashi T, Fujii H (2007) Inorg Chem 46:6227–6229

    Article  PubMed  CAS  Google Scholar 

  44. Cheng RJ, Latos-Grazynski L, Balch AL (1982) Inorg Chem 21:2412–2418

    Article  CAS  Google Scholar 

  45. Saltzmann H, Sharefkin JG (1963) Org Synth 43:60–61

    Google Scholar 

  46. Groves JT, Watanabe Y (1986) J Am Chem Soc 108:7834–7836

    Article  CAS  Google Scholar 

  47. Groves JT, Watanabe Y (1988) J Am Chem Soc 110:8443–8452

    Article  CAS  Google Scholar 

  48. Wolak M, van Eldik R (2007) Chem Eur J 13:4873–4883

    Article  PubMed  CAS  Google Scholar 

  49. Nam W, Lim MH, Oh SY (2000) Inorg Chem 39:5572–5575

    Article  PubMed  CAS  Google Scholar 

  50. Pan Z, Newcomb M (2007) Inorg Chem 46:6767–6774

    Article  PubMed  CAS  Google Scholar 

  51. Groves JT, Gross Z, Stern MK (1994) Inorg Chem 33:5065–5072

    Article  CAS  Google Scholar 

  52. Nam W, Park SE, Lim IK, Lim MH, Hong J, Kim J (2003) Am Chem Soc 125:14674–14675

    Article  CAS  Google Scholar 

  53. Jeong YL, Kang Y, Han AR, Lee YM, Kotani H, Fukuzumi S, Nam W (2008) Angew Chem Int Ed 47:7321–7324

    Article  CAS  Google Scholar 

  54. Groves JT, McClusky GA, White RE, Coon MJ (1978) Biochem Biophys Res Commun 81:154–160

    Article  PubMed  CAS  Google Scholar 

  55. Rittle J, Green MT (2010) Science 330:933–937

    Article  PubMed  CAS  Google Scholar 

  56. Van Rantwijk F, Sheldon RA (2000) Curr Opin Biotechnol 11:554–564

    Article  PubMed  Google Scholar 

  57. Stephenson NA, Bell AT (2007) J Mol Catal A 275:54–62

    Article  CAS  Google Scholar 

  58. Stone KL, Behan RK, Green MT (2006) Proc Natl Acad Sci USA 103:12307–12310

    Article  PubMed  CAS  Google Scholar 

  59. Hersleth HP, Uchida T, Røhr AK, Teschner T, Schünemann V, Kitagawa T, Trautwein AX, Görbitz CH, Andersson KK (2007) J Biol Chem 32:23372–23386

    Article  Google Scholar 

  60. Altun A, Shaik S, Thiel W (2007) J Am Chem Soc 129:8978–8987

    Article  PubMed  CAS  Google Scholar 

  61. Tahsini L, Bagherzadeh M, Nam W, de Visser SP (2009) Inorg Chem 48:6661–6669

    Article  PubMed  CAS  Google Scholar 

  62. Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140

    Article  PubMed  CAS  Google Scholar 

  63. Schaefer T, Sebastian R (1990) Can J Chem 68:1548–1552

    Article  CAS  Google Scholar 

  64. Sugimoto H, Tung HC, Sawyer DT (1988) J Am Chem Soc 110:2465–2470

    Article  CAS  Google Scholar 

  65. Newcomb M, Halgrimson JA, Horner JH, Wasinger EC, Chem LX, Sligar SG (2008) Proc Natl Acad Sci USA 105:8179–8184

    Article  PubMed  CAS  Google Scholar 

  66. Bell RP (1936) Proc R Soc London Ser A 154:414–421

    Article  Google Scholar 

  67. Evans MG, Polanyi M (1938) Trans Faraday Soc 34:11–24

    Article  CAS  Google Scholar 

  68. Finn M, Friedline R, Suleman NK, Wohl JC, Tanko JM (2004) J Am Chem Soc 126:7578–7584

    Article  PubMed  CAS  Google Scholar 

  69. Page MI, Jencks WP (1971) Proc Natl Acad Sci USA 68:1678–1683

    Article  PubMed  CAS  Google Scholar 

  70. Stein SE, Brown RL (1991) J Am Chem Soc 113:787–793

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge continued financial support from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi van Eldik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fertinger, C., Franke, A. & van Eldik, R. Mechanistic insight from thermal activation parameters for oxygenation reactions of different substrates with biomimetic iron porphyrin models for compounds I and II. J Biol Inorg Chem 17, 27–36 (2012). https://doi.org/10.1007/s00775-011-0822-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0822-7

Keywords

Navigation