Skip to main content

Advertisement

Log in

Oxo-amphiboles in mantle xenoliths: evidence for H2O-rich melt interacting with the lithospheric mantle of Harrow Peaks (Northern Victoria Land, Antarctica)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Amphiboles are the most widespread hydrous metasomatic phases in spinel-bearing mantle peridotites from Harrow Peaks (HP), Northern Victoria Land (Antarctica). They occur both in veinlets and disseminated in the peridotite matrix (preferentially associated with clinopyroxene and spinel grains). Four amphibole crystals were investigated by single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA), secondary ion mass spectrometry (SIMS) and micro-Mössbauer spectroscopy; these crystal-chemical data allow to constrain upper mantle conditions during growth of these amphiboles and the role of volatile circulation during metasomatic processes in the Antarctic region. The HP amphiboles have low Mg# values (69.3–84.1), high TiO2 (2.74–5.30 wt%) and FeOtot contents (3.40 to 6.90 wt%). The Fe3+/Fetot ratios are significantly high (0.53–0.66). The W-site is mainly occupied by O2- (0.984–1.187 apfu) plus OH (H2O: 0.70–1.01 wt%) and minor F (0.04–0.24 wt%) and Cl (0.03–0.08 wt%). Consequently, HP amphiboles are actually characterized by a significant oxo component. The aH2O values were calculated at 1.5 GPa by dehydration equilibrium equations written as H2O-buffering equilibria among end-member components of amphibole and coexisting peridotite phases. Three out of four HP amphibole-bearing peridotites have values of aH2O ranging from 0.122 to 0.335; whereas one sample has aH2O remarkably higher (0.782) approaching an ideal H2O basalt solubility. The HP fO2 values, determined by the olivine-spinel-orthopyroxene oxygeobarometer (ΔQFM = −1.77 : +0.01), are remarkably different from those calculated on the basis of the amphibole dehydration equilibrium and the application of the dissociation reaction (ΔQFM = −2.60 : +6.8). The high aH2O and the extremely high fO2 values, determined by the oxy-amphibole equilibrium with respect to the redox conditions recorded by the co-existing anhydrous minerals (close to QFM buffer), revealed that: i) the amphibole-forming reaction is a relatively recent process with the new phases far from having reached a potential equilibrium with the peridotite matrix; ii) amphibole seems to be formed by the precipitation of migrating H2O-rich melts with a negligible contribution of the peridotite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armienti P, Perinelli C (2010) Cenozoic thermal evolution in lithospheric mantle in northern Victoria Land (Antarctica): evidences from mantle xenoliths. Tectonophysics 486:28–35

    Article  Google Scholar 

  • Ballhaus C, Berr RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen barometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Bonadiman C, Hao Y, Coltorti M, Dallai L, Faccini B, Huang YX (2009) Water contents of pyroxenes in intraplate lithospheric mantle. Eur J Mineral 21:637–647

    Article  Google Scholar 

  • Bonadiman C, Coltorti M, Beccaluva L, Griffin WL, O’Reilly SY, Siena F (2011) Metasomatism versus host magma infiltration: a case study of Sal mantle xenoliths, Cape Verde Archipelago. Geol Soc Am Spec Pap 478:283–305

    Google Scholar 

  • Bonadiman C, Nazzareni S, Coltorti M, Comodi P, Giuli G, Faccini B (2014) Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica. Contrib Mineral Petrol 167:984–1001

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Brey GP, Kohler TP (1990) Geothermometry in four-phase lherzolites II: new thermometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Brown ID, Shannon RD (1973) Empirical bond strength-bond length curves for oxides. Acta Crystallogr A29:266–282

    Article  Google Scholar 

  • Chazot G, Menzies M, Harte B (1996) Silicate glasses in spinel lherzolites from Yemen: origin and chemical composition. Chem Geol 134:159–179

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Faccini B, Ntaflos T, Siena F (2004) Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos 75:115–139

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Faccini B, Gregoire M, O’Reilly SY, Powell W (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99:68–84

    Article  Google Scholar 

  • Comodi P, Boffa-Ballaran T, Zanazzi PF, Capalbo C, Zanetti A, Nazzareni S (2010) The effect of oxo-component on the high-pressure behavior of amphiboles. Am Mineral 95:1042–1051

    Article  Google Scholar 

  • Dale J, Powell R, White RW, Elmer FL, Holland TJB (2005) A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J Metamorph Geol 23:771–791

    Article  Google Scholar 

  • Fabbrizio A, Stalder R, Hametner K, Günther D, Marquardt K (2013) Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1300 °C. Contrib Mineral Petrol 166:639–653

    Article  Google Scholar 

  • Foley SF (2011) A reappraisal of redox melting in the earth’s mantle as a function of tectonic setting and time. J Petrol 52:1363–1391

    Article  Google Scholar 

  • Foley SF, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zone. Nature 417:837–840

    Article  Google Scholar 

  • Gentili S, Biagioni C, Comodi P, Pasero M, McCammon C, Bonadiman C (2014) Ferri-kaersutite, IMA 2014-051. CNMNC Newsletter No. 22, October 2014. Min Mag 78: 1245

  • Goncharov AG, Ionov DA (2012) Redox state of deep off-craton lithospheric mantle: new data from garnet and spinel peridotites from Vitim, southern Siberia. Contrib Mineral Petrol 164:731–745

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) (2007) Amphiboles: crystal chemistry, occurrence, and health issues. Rev Mineral Geochem 67, Chantilly, Virginia USA

  • Hawthorne FC, Della Ventura G (2007) Short-range order in amphiboles. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Rev Mineral Geochem 67:173–222

  • Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Rev Mineral Geochem 67:1–51

  • Hawthorne FC, Ungaretti L, Oberti R (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. Can Mineral 33:907–911

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GF, Maresh RFM, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Powell R (2006) Mineral activity-composition relations and petrological calculations involving cation equipartition in multisite minerals: a logical inconsistency. J Metamorph Geol 24:851–886

    Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 31:341–356

    Article  Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J Petrol 43:2219–2259

    Article  Google Scholar 

  • King PL, Hervig RL, Holloway JR, Vennemann TW, Righter K (1999) Oxy-substitution and dehydrogenation in mantle-derived amphibole megacrysts. Geochim Cosmochim Acta 63:3635–3651

    Article  Google Scholar 

  • King PL, Hervig RL, Holloway JR, Delaney JS, Dyar MD (2000) Partitioning of Fe3+/Fetotal between amphibole and basanitic melt as a function of oxygen fugacity. Earth Planet Sci Lett 178:97–112

    Article  Google Scholar 

  • Kovács I, Green DH, Rosenthal A, Hermann J, O’Neil HSC, Hibberson WO, Udvardi B (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol 53:2067–2093

    Article  Google Scholar 

  • Lamb WM, Popp RK (2009) Amphibole equilibria in mantle rocks: determining values of mantle aH2O and implications for mantle H2O contents. Am Mineral 94:41–52

    Article  Google Scholar 

  • Martin RF (2007) Amphiboles in the igneous environment. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Rev Mineral Geochem 67:323–353

  • Melchiorre M, Coltorti M, Bonadiman C, Faccini B, O’Reilly SY, Pearson NJ (2011) The role of eclogite in the rift-related metasomatism and Cenozoic magmatism of Northern Victoria Land, Antarctica. Lithos 124:319–330

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Mysen BO (2014) Water-melt interaction in hydrous magmatic systems at high temperature and pressure. Progr Earth Planet Sci 1:1–18

    Article  Google Scholar 

  • Mysen BO, Virgo D, Popp RK, Bertka CM (1998) The role of H2O in Martian magmatic systems. Am Mineral 83:942–946

    Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Oberti R, Hawthorne FC, Ungaretti L, Cannillo E (1995) [6]Al disorder in amphiboles from mantle peridotites. Can Mineral 33:867–878

    Google Scholar 

  • Oberti R, Vannucci R, Zanetti A, Tiepolo M, Brumm RC (2000) A crystal-chemical re-evaluation of amphibole/melt and amphibole/clinopyroxene DTi in petrogenetic studies. Am Mineral 85:407–419

    Article  Google Scholar 

  • Oberti R, Hawthorne FC, Cannillo E, Cámara F. (2007) Long-range order in amphiboles. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Reviews in Mineralogy and Geochemistry, vol 67, p 125–171

  • Ottolini L, Hawthorne FC (2001) SIMS ionization of hydrogen in silicates: a case study of kornerupine. J Anal At Spectrom 6:1266–1270

    Article  Google Scholar 

  • Ottolini LP, Le Févre B (2008) SIMS analysis of chlorine in metasomatised upper-mantle rocks. Microchim Acta 161:329–336

    Article  Google Scholar 

  • Ottolini L, Bottazzi P, Zanetti A (1994) Quantitative analysis of hydrogen, fluorine and chlorine in silicates using energy filtering. In Benninghoven A, Nihei Y, Shimizu R, Werner HW (eds) Proceedings of the Ninth International Conference on Secondary Ion Mass Spectrometry (SIMS IX), Yokohama, Japan, 7-12 November, 1993, John Wiley & Sons, 1994, p 191–194

  • Ottolini L, Bottazzi P, Zanetti A, Vannucci R (1995) Determination of hydrogen in silicates by secondary ion mass spectrometry. Analyst 120:1309–1314

    Article  Google Scholar 

  • Ottolini L, Càmara F, Hawthorne FC, Stirling J (2002) SIMS matrix effects in the analysis of light elements in silicate minerals: comparison with SREF and EMPA data. Am Mineral 87:1477–1485

    Article  Google Scholar 

  • Perinelli C, Armienti P, Dallai L (2006) Geochemical and O-isotope constraints on the evolution of lithospheric mantle in the Ross Sea rift area (Antarctica). Contrib Mineral Petrol 151:245–266

    Article  Google Scholar 

  • Perinelli C, Andreozzi GB, Conte AM, Oberti R, Armienti P (2012) Redox state of subcontinental lithospheric mantle and relationships with metasomatism: insights from spinel peridotites from northern Victoria Land (Antarctica). Contrib Mineral Petrol 164:1053–1067

    Article  Google Scholar 

  • Popp RK, Virgo D, Phillips MW (1995) H deficiency in kaersutitic amphiboles: experimental verification. Am Mineral 80:534–548

    Google Scholar 

  • Popp RK, Hibbert HA, Lamb WM (2006) Oxy-amphibole equilibria in Ti-bearing calcic amphiboles: experimental investigation and petrologic implications for mantle-derived amphiboles. Am Mineral 91:54–66

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1984) Possibilités d’analyse en profondeur à la microsonde électronique. J Microsc Spectrosc Electron 9:99–100

    Google Scholar 

  • Prescher C, McCammon C, Dubrovinsky L (2012) MossA- a program for analyzing energy-domain Mössbauer spectra from conventional and synchtron sources. J Appl Crystallogr 45:329–331

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Qudratic elongation: a quantitative measure of distortion in coordination polyhedral. Science 7:567–570

    Article  Google Scholar 

  • Sapienza GT, Scambelluri M, Braga R (2009) Dolomite-bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone, Eastern Alps, Italy). Contrib Mineral Petrol 158:401–420

    Article  Google Scholar 

  • Scordari F, Dyar MD, Schingaro E, Lacalamita M, Ottolini L (2010) XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy). Am Mineral 95:1657–1670

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Tiepolo M, Zanetti A, Oberti R (1999) Detection, crystal-chemical mechanism and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. Eur J Mineral 11:345–354

    Article  Google Scholar 

  • Tiepolo M, Vannucci R, Bottazzi OR, Zanetti A, Foley SF (2000) Partitioning of REE, Y, Th, U and Pb between pargasite, kaersutite and basanite to trachyte melts: implications for percolated and veined mantle. Geochem Geophys Geosyst. doi:10.1029/2000GC000064

    Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melts. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues. Reviews in Mineralogy and Geochemistry, vol 67, p 417–451

  • Vannucci R, Piccardo GB, Rivalenti G, Zanetti A, Rampone E, Ottolini L, Oberti R, Mazzucchelli M, Bottazzi P (1995) Origin of LREE-depleted amphiboles in the subcontinental mantle. Geochim Cosmochim Acta 59:1763–1771

    Article  Google Scholar 

  • Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implication for solidus positions and mantle metasomatism. Contrib Mineral Petrol 44:1–19

    Article  Google Scholar 

  • White RV, Powell R, Clark GL (2002) The interpretation of reaction texture in Fe-rich metapelitic granulites in Musgrave Bloc, Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  Google Scholar 

  • Wilson AJC (1992) International tables for crystallography volume C. Kluwer, Dordrecht

    Google Scholar 

  • Wood BJ (1990) An experimental test for spinel peridotite oxygen barometer. J Geophys Res 97:15845–15851

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122

    Article  Google Scholar 

  • Zipfel J, Worner G (1992) Thermobarometry on four- and five-phase peridotites from a continental rift system: evidence for upper mantle uplift and cooling at the Ross Sea margin (Antarctica). Contrib Mineral Petrol 111:24–36

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank R. Carampin (IGG-CNR Padova) and C. McCammon (BGI-Bayreuth) for the electron microprobe and Mössbauer spectroscopy analyses, respectively. The EMP laboratory staff of the Department of Geosciences and Natural Resource Management is acknowledged for the EMP analyses. M. Pasero (University of Pisa) is acknowledged for the useful discussion on the amphibole crystal chemistry. We also thank Barbara Galassi and Steve Deforie for their correction of English language. This study was financially supported by the PNRA (Programma Nazionale Ricerche in Antartide) project. 2010/A2.08 “Xenoliths and basic lavas in understanding the C-O-H system in the mantle of the polar regions”, coordinated by M. Coltorti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gentili.

Additional information

Editorial handling: L. Bindi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentili, S., Bonadiman, C., Biagioni, C. et al. Oxo-amphiboles in mantle xenoliths: evidence for H2O-rich melt interacting with the lithospheric mantle of Harrow Peaks (Northern Victoria Land, Antarctica). Miner Petrol 109, 741–759 (2015). https://doi.org/10.1007/s00710-015-0404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0404-4

Keywords

Navigation