Skip to main content

Advertisement

Log in

Titanium-rich metasomatism in the lithospheric mantle beneath the Arkhangelsk Diamond Province, Russia: insights from ilmenite-bearing xenoliths and HP–HT reaction experiments

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

To provide new insights into the interaction of ultramafic alkaline melts with the subcontinental lithospheric mantle, we present results of a petrographical-mineralogical study of ilmenite-bearing mantle xenoliths from the Grib kimberlite, Archangelsk, Russia along with results from reaction experiments between harzburgite and Fe–Ti bearing carbonate–silicate melts similar to aillikite. The compositions of orthopyroxene, ilmenite and garnet from our mantle xenoliths are similar to compositions of minerals of the low-Cr megacryst suite from different kimberlite occurrences worldwide including the Grib kimberlite as well as minerals from sheared lherzolite xenoliths captured by the Grib kimberlite. This suggests that ilmenite-bearing xenoliths, megacrysts, and sheared lherzolite xenoliths could have a common origin and/or formed under similar conditions. The reaction experiments were performed at 4 GPa and 1200 °C with varying proportions of aillikite (0, 10, and 50 wt%) that reacted with harzburgite. The experimental runs with 10% and 50% aillikite resulted in two layers within the capsule, with an ilmenite-bearing reaction zone at the contact between aillikite and harzburgite, and an ilmenite-free zone characterized by higher garnet and clinopyroxene abundances. An increase of aillikite melt is directly correlated with increasing TiO2 and decreasing Cr2O3 contents and Mg# values in the mineral phases, most significantly for pyroxenes. Overall, the experiments produce a chemical gradation of minerals from Cr-rich (Fe–Ti-poor) to Cr-poor (Fe–Ti-rich) which is strikingly similar to the chemical gradation observed in minerals from natural mantle-derived xenoliths from kimberlites. In summary, comparison of our experimental data with natural samples indicates possible links between the generation of megacrysts and Ti-rich metasomatism of the lithospheric mantle by ultramafic alkaline (aillikite-related) melts and their possible evolution towards kimberlites. Our results illustrate the importance of melt-rock ratios in generating the mineralogical and chemical diversity in mantle xenolith suites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afanasiev VP, Ashchepkov IV, Verzhak VV, O’Brien H, Palessky SV (2013) PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. J Asian Earth Sci 70–71:45–63. https://doi.org/10.1016/j.jseaes.2013.03.002

    Article  Google Scholar 

  • Agashev AM, Pokhilenko NP, Mal’kovetsSobolev VGNV (2006) Sm–Nd isotopic system in garnet megacrysts from the Udachnaya kimberlite pipe (Yakutia) and petrogenesis of kimberlites. Dokl Earth Sci 407:491–494. https://doi.org/10.1134/S1028334X06030329

    Article  Google Scholar 

  • Arzamastsev AA, Wu F-Y (2014) U-Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province. Petrology 22:462–479. https://doi.org/10.1134/S0869591114050026

    Article  Google Scholar 

  • Aulbach S (2018) Cratonic lithosphere discontinuities: dynamics of small-volume melting, metacratonization, and a possible role for brines. Lithos Discontinuities M:177–203. https://doi.org/10.1002/9781119249740.ch10

    Article  Google Scholar 

  • Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY (2013) Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem Geol 352:153–169. https://doi.org/10.1016/j.chemgeo.2013.05.037

    Article  Google Scholar 

  • Aulbach S, Massuyeau M, Gaillard F (2017) Origins of cratonic mantle discontinuities: a view from petrology, geochemistry and thermodynamic models. Lithos 268–271:364–382. https://doi.org/10.1016/j.lithos.2016.11.004

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73. https://doi.org/10.1016/S0024-4937(99)00074-2

    Article  Google Scholar 

  • Becker M, Le Roex AP (2006) Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. J Petrol 47:673–703. https://doi.org/10.1093/petrology/egi089

  • Bell DR, Moore RO (2004) Deep chemical structure of the southern African mantle from kimberlite megacrysts. S Afr J Geol 107:59–80. https://doi.org/10.2113/107.1-2.59

    Article  Google Scholar 

  • Bogatikov OA, Kononova VA, Nosova AA, Kargin AV (2009) Polygenetic sources of kimberlites, magma composition, and diamond potential exemplified by the East European and Siberian cratons. Petrology 17:606–625. https://doi.org/10.1134/S0869591109060071

    Article  Google Scholar 

  • Bogatikov OA, Kononova VA, Nosova AA, Kondrashov IA (2007) Kimberlites and lamproites of the east European platform: petrology and geochemistry. Petrology 15:315–334. https://doi.org/10.1134/S0869591107040017

    Article  Google Scholar 

  • Bogatikov OA, Kononova VA, Pervov VA, Zhuravlev DZ (2001) Sources, geodynamic setting of formation, and diamond-bearing potential of kimberlites from the northern margin of the Russian plate: a Sr–Nd isotopic and ICP-MS geochemical study. Petrology 9:191–203

    Google Scholar 

  • Bogdanova SV, Gorbatschev R, Garetsky RG (2016) EUROPE|East European Craton. In: Reference module in earth systems and environmental sciences. Elsevier, pp 1–18

  • Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212. https://doi.org/10.1016/j.lithos.2009.04.030

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378. https://doi.org/10.1093/petrology/31.6.1353

    Article  Google Scholar 

  • Burgess SR, Harte B (2004) Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry. J Petrol 45:609–633. https://doi.org/10.1093/petrology/egg095

    Article  Google Scholar 

  • Bussweiler Y (2019) Polymineralic inclusions in megacrysts as proxies for kimberlite melt evolution—a review. Minerals 9:530. https://doi.org/10.3390/min9090530

    Article  Google Scholar 

  • Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252. https://doi.org/10.1016/j.lithos.2015.02.016

    Article  Google Scholar 

  • Bussweiler Y, Pearson DG, Stachel T, Kjarsgaard BA (2018) Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada—implications for the origin of clinopyroxene and garnet in cratonic lherzolites. Mineral Petrol 112:583–596. https://doi.org/10.1007/s00710-018-0599-2

    Article  Google Scholar 

  • Bussweiler Y, Stone RS, Pearson DG, Luth RW, Stachel T, Kjarsgaard BA, Menzies A (2016) The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib Mineral Petrol 171:1–25. https://doi.org/10.1007/s00410-016-1275-3

    Article  Google Scholar 

  • Castillo-Oliver M, Melgarejo JC, Galí S, Pervov V, Gonçalves AO, Griffin WL, Pearson NJ, O’Reilly SY (2017) Use and misuse of Mg- and Mn-rich ilmenite in diamond exploration: a petrographic and trace element approach. Lithos 292–293:348–363. https://doi.org/10.1016/j.lithos.2017.09.021

    Article  Google Scholar 

  • Cone D, Kopylova M (2021) Origin of megacrysts by carbonate-bearing metasomatism: a case study for the Muskox kimberlite, Slave craton, Canada. J Geol Soc Lond jgs2020–184. https://doi.org/10.1144/jgs2020-184

  • Dalton H, Giuliani A, O’Brien H, Phillips D, Hergt J (2020) The role of lithospheric heterogeneity on the composition of kimberlite magmas from a single field: The case of Kaavi-Kuopio, Finland. Lithos 354–355:105333. https://doi.org/10.1016/j.lithos.2019.105333

  • Dawson JB, Smith JV (1977) The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(77)90239-3

    Article  Google Scholar 

  • Dongre A, Tappe S (2019) Kimberlite and carbonatite dykes within the Premier diatreme root (Cullinan Diamond Mine, South Africa): New insights to mineralogical-genetic classifications and magma CO2 degassing. Lithos 338–339:155–173. https://doi.org/10.1016/j.lithos.2019.04.020

  • Eggler DH, McCallum MEH, Smith CBH (1979) Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: Petrology, geothermometry-barometry, and areal distribution. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusion in kimberlites and other volcanics. American Geophysical Union, Washington, D.C., pp 213–226

    Chapter  Google Scholar 

  • Fitzpayne A, Giuliani A, Maas R, Hergt J, Janney P, Phillips D (2019) Progressive metasomatism of the mantle by kimberlite melts: Sr–Nd–Hf–Pb isotope compositions of MARID and PIC minerals. Earth Planet Sci Lett 509:15–26. https://doi.org/10.1016/j.epsl.2018.12.013

    Article  Google Scholar 

  • Fitzpayne A, Giuliani A, Phillips D, Hergt J, Woodhead JD, Farquhar J, Fiorentini ML, Drysdale RN, Wu N (2018) Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Mineral Petrol. https://doi.org/10.1007/s00710-018-0573-z

    Article  Google Scholar 

  • Francis D, Patterson M (2009) Kimberlites and aillikites as probes of the continental lithospheric mantle. Lithos 109:72–80. https://doi.org/10.1016/j.lithos.2008.05.007

    Article  Google Scholar 

  • Giuliani A, Kamenetsky VS, Kendrick MAA, Phillips D, Wyatt BA, Maas R (2013) Oxide, sulphide and carbonate minerals in a mantle polymict breccia: metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chem Geol 353:4–18. https://doi.org/10.1016/j.chemgeo.2012.09.025

    Article  Google Scholar 

  • Giuliani A, Pearson DG, Soltys A, Dalton H, Phillips D, Foley SF, Lim E, Goemann K, Griffin WL, Mitchell RH, Graham Pearson D, Soltys A, Dalton H, Phillips D, Foley SF, Lim E, Goemann K, Griffin WL, Mitchell RH (2020) Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci Adv 6:eaaz0424. https://doi.org/10.1126/sciadv.aaz0424

  • Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201. https://doi.org/10.1016/j.lithos.2015.11.013

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky VS, Kendrick MA, Wyatt BA, Goemann K, Hutchinson G (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858. https://doi.org/10.1093/petrology/egu008

    Article  Google Scholar 

  • Golubeva YY, Pervov VA, Kononova VA (2006) Petrogenesis of autoliths from kimberlitic breccias in the V. Grib Pipe (Arkhangelsk district). Dokl Earth Sci 411:1257–1262. https://doi.org/10.1134/S1028334X06080228

    Article  Google Scholar 

  • Golubkova AB, Nosova AA, Larionova YO (2013) Mg-ilmenite megacrysts from the Arkhangelsk kimberlites, Russia: genesis and interaction with kimberlite melt and postkimberlite fluid. Geochemistry Int 51:353–381. https://doi.org/10.1134/S0016702913030038

    Article  Google Scholar 

  • Gregoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths : their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib to Mineral Petrol 142:603–625. https://doi.org/10.1007/s00410-001-0315-8

    Article  Google Scholar 

  • Gregoire M, Bell DR, Le Roex AP (2003) Garnet Lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657. https://doi.org/10.1093/petrology/44.4.629

    Article  Google Scholar 

  • Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999) Harzburgite to lherzolite and back again : metasomatic processes in ultrama ® c xenoliths from the Wesselton. Contrib Miner Pet 134:232–250

    Article  Google Scholar 

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857. https://doi.org/10.1016/j.lithos.2004.04.012

    Article  Google Scholar 

  • Grützner T, Klemme S, Rohrbach A, Gervasoni F, Berndt J (2018) The effect of fluorine on the stability of wadsleyite: implications for the nature and depths of the transition zone in the Earth’s mantle. Earth Planet Sci Lett 482:236–244. https://doi.org/10.1016/j.epsl.2017.11.011

    Article  Google Scholar 

  • Gurney JJ, Jakob WRO, Dawson JB (1979) Megacrysts from the monastery kimberlite pipe, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusion in kimberlites and other volcanics. American Geophysical Union, Washington, D. C., pp 227–243

    Chapter  Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373. https://doi.org/10.1007/BF01187140

    Article  Google Scholar 

  • Harte B (1983) Mantle peridotites and processes the kimberlite samples. In: Hawkesworth C, Norry M (eds) Continental basalts and mantle xenoliths. Shiva Publishing Ltd., Nantwich, pp 46–91

    Google Scholar 

  • Harte B, Gurney JJ (1981) The mode of formation of chromium-poor megacryst suites from kimberlites. J Geol 89:749–753. https://doi.org/10.1086/628640

    Article  Google Scholar 

  • Harte B, Hunter RH, Kinny PD (1993) Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Philos Trans R Soc A Math Phys Eng Sci 342:1–21. https://doi.org/10.1098/rsta.1993.0001

    Article  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70. https://doi.org/10.1016/j.epsl.2011.04.034

    Article  Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the siberian craton: new constraints from fresh peridotites in the Udachnaya-East Kimberlite. J Petrol 51:2177–2210. https://doi.org/10.1093/petrology/egq053

    Article  Google Scholar 

  • Ionov DA, Doucet LS, Xu Y, Golovin AV, Oleinikov OB (2018) Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim Cosmochim Acta 224:132–153. https://doi.org/10.1016/j.gca.2017.12.028

    Article  Google Scholar 

  • Jones RA (1987) Strontium and Neodymium isotope and rare earth element evidence for the genesis of megacrysts in kimberlites of southern Africa. In: Nixon PH (ed) Mantle Xenoliths. Wiley, NewYork, pp 711–724

    Google Scholar 

  • Kalashnikova T (2017) Geochemical characteristics and petrogenesis of mantle xenoliths from Obnazhennaya kimberlite pipe (Yakutian kimberlite province) (In Russian). Vinogradov Institute of Geochemistry of SB RAS

  • Kamenetsky VS (2016) Comment on: “The ascent of kimberlite: insights from olivine” by Brett R.C. et al. [Earth Planet. Sci Lett 424(2015):119–131]. Earth Planet Sci Lett 440:187–189. https://doi.org/10.1016/j.epsl.2016.02.014

  • Kamenetsky VS, Yaxley GM (2015) Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magmaascent. Geochim Cosmochim Acta 158:48–56. https://doi.org/10.1016/j.gca.2015.03.004

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839. https://doi.org/10.1093/petrology/egm033

    Article  Google Scholar 

  • Kargin AV (2021) Multistage mantle metasomatism during the generation of kimberlite melts: evidence from mantle xenoliths and megacrysts of the grib kimberlite, Arkhangelsk, Russia. Petrology 29:227–255. https://doi.org/10.1134/S0869591121030024

    Article  Google Scholar 

  • Kargin AV, Golubeva YY, Demonterova EI, Koval’chuk EV, (2017a) Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar province, Yakutia, Russia. Petrology 25:535–565. https://doi.org/10.1134/S0869591117060030

    Article  Google Scholar 

  • Kargin AV, Golubeva YY, Kononova VA (2011) Kimberlites of the Daldyn-Alakit region (Yakutia): spatial distribution of the rocks with different chemical characteristics. Petrology 19:496–520. https://doi.org/10.1134/S086959111105002X

    Article  Google Scholar 

  • Kargin AV, Nosova AA, Sazonova LV, Peresetskaya EV, Golubeva YY, Lebedeva NM, Tretyachenko VV, Khvostikov VA, Burmii ZP, Burmii JP (2020) Ilmenite from the Arkhangelsk Diamond Province, Russia: composition, origin and indicator of diamondiferous kimberlites. Petrology 28:315–337. https://doi.org/10.1134/S0869591120040050

    Article  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Lebedeva NM, Kostitsyn YA, Kovalchuk EV, Tretyachenko VV, Tikhomirova YS (2019) Phlogopite in mantle xenoliths and kimberlite from the Grib pipe, Arkhangelsk province, Russia: evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite. Geosci Front 10:1941–1959. https://doi.org/10.1016/j.gsf.2018.12.006

    Article  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Lebedeva NM, Tretyachenko VV, Abersteiner A (2017b) Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts. Lithos 292–293:34–48. https://doi.org/10.1016/j.lithos.2017.08.018

    Article  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Pervov VA, Minevrina EA, Khvostikov VA, Burmii ZP (2017c) Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: texture, composition, and origin. Geosci Front 8:653–669. https://doi.org/10.1016/j.gsf.2016.03.001

    Article  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455. https://doi.org/10.1016/j.lithos.2016.07.015

    Article  Google Scholar 

  • Kargin AV, Nosova AA, Sazonova LV, Tretyachenko VV, Larionova YO (2021) Ultramafic alkaline rocks of Kepino cluster, Arkhangelsk, Russia: evolution of kimberlite melts. Minerals 5:1–28

    Google Scholar 

  • Kjarsgaard BA, Pearson DG, Tappe S, Nowell GM, Dowall D (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos 112:236–248. https://doi.org/10.1016/j.lithos.2009.06.001

  • Kononova VA, Bogatikov OA, Kondrashov IA (2011) Kimberlites and lamproites: criteria for similarity and differences. Petrology 19:34–54. https://doi.org/10.1134/S0869591111010024

    Article  Google Scholar 

  • Kononova VA, Golubeva YY, Bogatikov OA, Kargin AV (2007) Diamond resource potential of kimberlites from the Zimny Bereg field, Arkhangel’sk oblast. Geol Ore Depos 49:421–441. https://doi.org/10.1134/S1075701507060013

    Article  Google Scholar 

  • Kopylova MG, Matveev S, Raudsepp M (2007) Searching for parental kimberlite melt. Geochim Cosmochim Acta 71:3616–3629. https://doi.org/10.1016/j.gca.2007.05.009

  • Kostrovitsky SI, Malkovets VG, Verichev EM, Garanin VK, Suvorova LV (2004) Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia). Lithos 77:511–523. https://doi.org/10.1016/j.lithos.2004.03.014

    Article  Google Scholar 

  • Kostrovitsky SI, Soloveva LV, Yakovlev DA, Suvorova LF, Sandimirova GP, Travin AV, Yudin DS (2013) Kimberlites and megacrystic suite: isotope-geochemical studies. Petrology 21:127–144. https://doi.org/10.1134/S0869591113020057

    Article  Google Scholar 

  • Kramm U, Kogarko LN, Kononova VA, Vartiainen H (1993) The Kola Alkaline Province of the CIS and Finland: precise RbSr ages define 380–360 Ma age range for all magmatism. Lithos 30:33–44. https://doi.org/10.1016/0024-4937(93)90004-V

    Article  Google Scholar 

  • Larchenko VA, Stepanov VP, Minchenko GV, Pervov VA (2005) Age of igneous rocks, ore-bearing strata and Middle Paleozoic reservoirs of the Zimneberezhny diamondiferous region (Arkhangelsk diamondiferous province) (In Russian). In: Proceedings of the diamond geology—present and future (geologists for the 50th anniversary of Mirny and the diamond mining industry of Russia). VSU, Voronezh, pp 322–347

  • Larionova YO, Sazonova LV, Lebedeva NM, Nosova AA, Tretyachenko VV, Kargin AV (2016) Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite. Petrology 24:562–593. https://doi.org/10.1134/S0869591116040020

    Article  Google Scholar 

  • Lazarov M, Brey GP, Weyer S (2012) Evolution of the South African mantle—a case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: inter-mineral trace element and isotopic equilibrium. Lithos 154:193–209. https://doi.org/10.1016/j.lithos.2012.07.007

    Article  Google Scholar 

  • Lebedeva NM, Nosova AA, Kargin AV, Larionova YO, Sazonova LV, Tichomirova M (2020a) Sr–Nd–O isotopic evidence of variable sources of mantle metasomatism in the subcratonic lithospheric mantle beneath the Grib kimberlite, northwestern Russia. Lithos (in press)

  • Lebedeva NM, Nosova AA, Kargin AV, Sazonova LV (2020b) Evolution of kimberlite melt as inferred from inclusions in garnet megacrysts in the Grib kimberlite (Arkhangelsk Region, Russia). Mineral Petrol. https://doi.org/10.1007/s00710-020-00704-0

    Article  Google Scholar 

  • Lim E, Giuliani A, Phillips D, Goemann K (2018) Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa). Mineral Petrol. https://doi.org/10.1007/s00710-018-0607-6

    Article  Google Scholar 

  • Mahotkin IL, Gibson SA, Thompson RN, Zhuravlev DZ, Zherdev PU (2000) Late Devonian diamondiferous kimberlite and alkaline Picrite (Proto-kimberlite?) magmatism in the Arkhangelsk Region, NW Russia. J Petrol 41:201–227. https://doi.org/10.1093/petrology/41.2.201

    Article  Google Scholar 

  • Massuyeau M, Gardés E, Rogerie G, Aulbach S, Tappe S, Le Trong E, Sifré D, Gaillard F (2021) MAGLAB: A computing platform connecting geophysical signatures to melting processes in Earth’s mantle. Phys Earth Planet Inter 314. https://doi.org/10.1016/j.pepi.2020.106638

  • McDonough WF, Rudnick RL (1998) Mineralogy and composition of the upper mantle. Rev Mineral 37:139–164

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York

    Book  Google Scholar 

  • Mitchell RH (1995) Kimberlites, Orangeites, and Related Rocks Springer US, Boston, MA, 410 p

  • Mitchell RH (2004) Experimental studies At 5–12 GPa of the ondermatjie hypabyssal kimberlite. Lithos 76:551–564. https://doi.org/10.1016/j.lithos.2004.03.032

    Article  Google Scholar 

  • Mitchell R, Tappe S (2010) Discussion of Kimberlites and aillikites as probes of the continental lithospheric mantle by D. Francis and M. Patterson (Lithos v. 109, p. 72–80). Lithos 115:288–292. https://doi.org/10.1016/j.lithos.2009.10.017

  • Mitchell RH, Giuliani A, O’Brien H (2019) What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15:381–386. https://doi.org/10.2138/gselements.15.6.381

    Article  Google Scholar 

  • Moore A, Belousova E (2005) Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas. Contrib Mineral Petrol 149:462–481. https://doi.org/10.1007/s00410-005-0663-x

    Article  Google Scholar 

  • Moore AE (2008) Comments on the paper “Megacryst suites from the Lekkerfontein and Uintjiesberg kimberlites, southern Africa: evidence for a non-cognate origin.” S Afr J Geol 111:462–464. https://doi.org/10.2113/gssajg.111.4.462

    Article  Google Scholar 

  • Moore AE (1987) A model for the origin of ilmenite in kimberlite and diamond: implications for the genesis of the discrete nodule (megacryst) suite. Contrib Mineral Petrol 95:245–253. https://doi.org/10.1007/BF00381274

    Article  Google Scholar 

  • Moore AE, Lock NP (2001) The origin of mantle-derived megacrysts and sheared peridotites-evidence from kimberlites in the northern Lesotho - Orange Free State (South Africa) and Botswana pipe clusters. South African J Geol 104:23–38. https://doi.org/10.2113/104.1.23

    Article  Google Scholar 

  • Nimis P, Zanetti A, Dencker I, Sobolev NV (2009) Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): metasomatic processes, thermobarometry and diamond potential. Lithos 112:397–412. https://doi.org/10.1016/j.lithos.2009.03.038

    Article  Google Scholar 

  • Nosova AA, Dubinina EO, Sazonova LV, Kargin AV, Chvostikov VA, Burmii ZP, Kondrashov IA, Tretyachenko VV, Lebedeva NM, Khvostikov VA, Burmii ZP, Kondrashov IA, Tretyachenko VV (2017) Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk province: Contribution of mantle metasomatism. Petrology 25:150–180. https://doi.org/10.1134/S0869591117010064

    Article  Google Scholar 

  • Nosova AA, Kargin AV, Sazonova LV, Dubinina EO, Chugaev AV, Lebedeva NM, Yudin DS, Larionova YO, Abersteiner A, Gareev BI, Batalin GA (2020) Sr–Nd–Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: metasomatism of the sub-continental lithospheric mantle related to subduction and plume events. Lithos 364–365:105509. https://doi.org/10.1016/j.lithos.2020.105509

    Article  Google Scholar 

  • Nosova AA, Kopylova MG, Sazonova LV, Vozniak AA, Kargin AV, Lebedeva NM, Volkova GD, Peresetskaya EV (2021) Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe). Lithos (in press)

  • Nosova AA, Sazonova LV, Kargin AV, Smirnova MD, Lapin AV, Shcherbakov VD (2018) Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap aillikites. Contrib Mineral Petrol 173:55. https://doi.org/10.1007/s00410-018-1480-3

    Article  Google Scholar 

  • Nosova AA, Sazonova LV, Narkisova VV, Simakin SG (2002) Minor elements in clinopyroxene from paleozoic volcanics of the Tagil Island Arc in the Central Urals. Geochemistry 40:219–233

    Google Scholar 

  • O’Reilly SY, Griffin WL (2013) Mantle Metasomatism. In: Harlov DE, Håkon A (eds) Metasomatism and the chemical transformation of rock SE—8. Springer, Berlin, pp 471–533

    Chapter  Google Scholar 

  • Parsadanyan KS, Kononova VA, Bogatikov OA (1996) Sources of heterogeneous magmatism of the Arkhangelsk diamondiferous province. Petrology 4:460–479

    Google Scholar 

  • Pervov VA, Larchenko VA, Stepanov VP, Minchenko GV, Kechick IA, Bogomolov ES, Sergeev SA (2005) Kimberlite sills along the Mela River (Arkhangelsk diamond province): age, mineral and whole-rock composition. In: Geology of diamond: present and future (Essays of Geologists in honor of the 50th Anniversary of the town of Mirnyi and Russia’s diamond industry). Voronezh. Voronej, pp 558–570

  • Pivin M, Féménias O, Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112:951–960. https://doi.org/10.1016/j.lithos.2009.03.050

    Article  Google Scholar 

  • Price SE, Russell JK, Kopylova MG (2000) Primitive Magma From the Jericho Pipe, N.W.T., Canada: Constraints on Primary Kimberlite Melt Chemistry. J Petrol 41:789–808. https://doi.org/10.1093/petrology/41.6.789

  • Rock NMS (1991) Lamprophyres. Blackie, Glasgow

    Book  Google Scholar 

  • Russell JK, Porritt LA, Lavallée Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356. https://doi.org/10.1038/nature10740

  • Sablukov S, Sablukova L (2004) 3-D mapping of mantle substrate in the Zimny Bereg area, Russia. In: 8th international kimberlite conference, p FLA_0059: 1–5

  • Sablukov SM, Sablukova LI (2008) Asthenospheric effect on the mantle substrate and diversity of kimberlite rocks in Zimni Bereg (Arkhangelsk province). In: 9th international kimberlite conference. Frankfurt, pp 9IKC–A–00162

  • Sablukov SM, Sablukova LI, Griffin WL (2009) Distribution of trace elements in deep-situated minerals from kimberlite as indication of plume processes in the North of Russian Platform (In Russian). In: Deep-situated magmatizm, its source and plumes. Institute of Geography SB RAS, Miass, pp 135–170

  • Sablukov SM, Sablukova LI, Shavyrina MV (2000) Mantle xenoliths from the Zimnii bereg kimberlite deposits of rounded diamonds, Arkhangelsk diamondiferous province. Petrology 8:466–494

    Google Scholar 

  • Sablukova L, Sablukov S, Verichev E, Golovin N (2004) Mantle xenoliths of the Grib Pipe, Zimny Bereg Area, Russia. In: 8th international kimberlite conference. p FLA_0060: 1–5

  • Samsonov AV, Tretyachenko VV, Nosova AA, Larionova YO, Lepekhina EN, Larionov AN, Ipatieva IS (2012) Sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the Northern East European platform. In: 10th international kimberlite conference. Bangalore, p 10IKC35

  • Sazonova LV, Nosova AA, Kargin AV, Borisovskiy SE, Tretyachenko VV, Abazova ZM, Griban YG (2015) Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: types, composition, and origin. Petrology 23:227–258. https://doi.org/10.1134/S0869591115030054

    Article  Google Scholar 

  • Schultz F, Lehmann B, Tawackoli S, Rössling R, Belyatsky B, Dulski P (2004) Carbonatite diversity in the Central Andes: the Ayopaya alkaline province, Bolivia. Contrib Mineral Petrol 148:391–408. https://doi.org/10.1007/s00410-004-0612-0

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Kostrovitskii SI, Pokhilenko NP (2015) Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia). Russ Geol Geophys 56:1663–1678

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Pokhilenko NP (2017) Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci Front 8:641–651. https://doi.org/10.1016/j.gsf.2016.08.005

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Zedgenizov DA (2018) Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): evidence from mineral geochemistry and the U–Pb and Lu–Hf isotope compositions of zircon. Mineral Petrol. https://doi.org/10.1007/s00710-018-0581-z

    Article  Google Scholar 

  • Simon NSCC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal Cratonic Lithospheric Mantle. J Petrol 48:589–625. https://doi.org/10.1093/petrology/egl074

    Article  Google Scholar 

  • Solov’eva LV, Lavrentev YG, Egorov KN, Kostrovitskii SI, Korolyuk VN, Suvorova LF (2008) The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts. Russ Geol Geophys 49:207–224. https://doi.org/10.1016/j.rgg.2007.09.008

    Article  Google Scholar 

  • Solov’eva LV, Kostrovitsky SI, Kalashnikova TV, Ivanov AV (2019) The Nature of Phlogopite-Ilmenite and Ilmenite Parageneses in Deep-Seated Xenoliths from Udachnaya Kimberlite Pipe. Dokl Earth Sci 486:537–540. https://doi.org/10.1134/S1028334X19050180

    Article  Google Scholar 

  • Soltys A, Giuliani A, Phillips D (2018) A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 304–307:1–15. https://doi.org/10.1016/j.lithos.2018.01.027

  • Stamm N, Schmidt MW (2017) Asthenospheric kimberlites: volatile contents and bulk compositions at 7 GPa. Earth Planet Sci Lett 474:309–321. https://doi.org/10.1016/j.epsl.2017.06.037

    Article  Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Kjarsgaard BA (2005) Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. J Petrol 46:1893–1900. https://doi.org/10.1093/petrology/egi039

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J Petrol 47:1261–1315. https://doi.org/10.1093/petrology/egl008

    Article  Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286. https://doi.org/10.1016/j.gca.2008.03.008

    Article  Google Scholar 

  • Tappe S, Steenfelt A, Heaman LM, Simonetti A (2009) Lithos The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite–kimberlite relationships. Lithos 112:385–399. https://doi.org/10.1016/j.lithos.2009.03.002

    Article  Google Scholar 

  • Tretyachenko VV (2008) Lithofacies characteristics and paleogeographic conditions of the Early Carboniferous transitional reservoirs of the Zimnii Bereg diamond district (In Russian). In: Problems of prediction and search for diamond deposits at the closed. YaNTs SO RAN, Yakutsk, pp 125–131

  • van Achterbergh E, Griffin WL, Stiefenhofer J (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib Mineral Petrol 141:397–414. https://doi.org/10.1007/s004100000236

    Article  Google Scholar 

  • Veter M, Foley SF, Mertz-Kraus R, Groschopf N (2017) Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source. Lithos 292–293:81–95. https://doi.org/10.1016/j.lithos.2017.08.020

    Article  Google Scholar 

  • Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171:50. https://doi.org/10.1007/s00410-016-1255-7

    Article  Google Scholar 

  • Wu FY, Mitchell RH, Li QL, Sun J, Liu CZ, Yang YH (2013) In situ UPb age determination and SrNd isotopic analysis of perovskite from the Premier (Cullinan) kimberlite, South Africa. Chem Geol 353:83–95. https://doi.org/10.1016/j.chemgeo.2012.06.002

    Article  Google Scholar 

  • Wyatt BA, Baumgartner M, Anckar E, Grutter H (2004) Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 77:819–840. https://doi.org/10.1016/j.lithos.2004.04.025

    Article  Google Scholar 

  • Xu J, Melgarejo JC, Castillo-Oliver M (2018) Ilmenite as a recorder of kimberlite history from mantle to surface: examples from Indian kimberlites. Mineral Petrol. https://doi.org/10.1007/s00710-018-0616-5

    Article  Google Scholar 

  • Yaxley GM, Berry AJ, Rosenthal A, Woodland AB, Paterson D (2017) Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton. Sci Rep 7:30. https://doi.org/10.1038/s41598-017-00049-3

    Article  Google Scholar 

  • Ziberna L, Nimis P, Zanetti A, Marzoli A, Sobolev NV (2013) Metasomatic processes in the Central Siberian Cratonic Mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J Petrol 54:2379–2409. https://doi.org/10.1093/petrology/egt051

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to V.G. Dryupin, I.S. Sagaidak, and other colleagues from the Northwestern Regional Fund of Geological Information, Arkhangelsk, for permission and assistance in kimberlite sampling. The part of this research was conducted at the Laboratory of Analytical Techniques of High Spatial Resolution, Department of Petrology, Moscow State University. The purchase of the microprobe was financially supported by the Program for Development MSU. Microprobe studies of minerals were assisted by S. Borisovskii, E. Kovalchuk (IGEM RAS), and N. Korotaeva (Lomonosov Moscow State University). S.G. Simakin and E.V. Potapov (Yaroslavl Branch of the Physicotechnical Institute of RAS) are thanked for SIMS study of garnets and orthopyroxene. At the University of Münster, Maik Trogisch is thanked for sample preparation, and Beate Schmitte is thanked for assistance with EPMA. We are grateful to Thomas Stachel, Sonja Aulbach, and Luca Ziberna for their constructive reviews. We thank Hans Keppler for the efficient editorial handling.

Funding

This study was supported by the Russian Science Foundation (Project no. 19–17-00024). Y.B. was funded through a EU Marie Skłodowska-Curie Fellowship (Project ID 746518) at the University of Münster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kargin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

All authors confirm their participation in the publication.

Consent for publication

All authors agree to publish materials in Contributions to Mineralogy and Petrology.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargin, A., Bussweiler, Y., Nosova, A. et al. Titanium-rich metasomatism in the lithospheric mantle beneath the Arkhangelsk Diamond Province, Russia: insights from ilmenite-bearing xenoliths and HP–HT reaction experiments. Contrib Mineral Petrol 176, 101 (2021). https://doi.org/10.1007/s00410-021-01863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01863-9

Keywords

Navigation