Skip to main content

Advertisement

Log in

Mismatch negativity-like potential (MMN-like) in the subthalamic nuclei in Parkinson’s disease patients

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

An infrequent change to an otherwise repetitive sequence of stimuli leads to the generation of mismatch negativity (MMN), even in the absence of attention. This evoked negative response occurs in the scalp-recorded electroencephalogram (EEG) over the temporal and frontal cortices, 100–250 ms after onset of the deviant stimulus. The MMN is used to detect sensory information processing. The aim of our study was to investigate whether MMN can be recorded in the subthalamic nuclei (STN) as evidence of auditory information processing on an unconscious level within this structure. To our knowledge, MMN has never been recorded in the human STN. We recorded intracerebral EEG using a MMN paradigm in five patients with Parkinson’s disease (PD) who were implanted with depth electrodes in the subthalamic nuclei (STN). We found far-field MMN when intracerebral contacts were connected to an extracranial reference electrode. In all five PD patients (and nine of ten intracerebral electrodes), we also found near-field MMN-like potentials when intracerebral contacts were referenced to one another, and in some electrodes, we observed phase reversals in these potentials. The mean time-to-peak latency of the intracerebral MMN-like potentials was 214 ± 38 ms (median 219 ms). We reveal MMN-like potentials in bilateral STN. This finding provides evidence that STN receives sensory (auditory) information from other structures. The question for further research is whether STN receives such signals through a previously described hyperdirect pathway between STN and frontal cortex (a known generator of the MMN potential) and if the STN contributes to sensorimotor integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DBS:

Deep brain stimulation

EEG:

Electroencephalography

ERPs:

Event related potentials

IFC:

Inferior frontal cortex

MMN:

Mismatch negativity

MMN-like:

Mismatch negativity-like potential

PD:

Parkinson’s disease

P3:

P300 wave

SD:

Standard deviation

STN:

Subthalamic nucleus

References

  • Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16:38–51

    Article  CAS  PubMed  Google Scholar 

  • Arias P, Cudeiro J (2010) Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PLoS One 5:e9675

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnott SR, Alain C (2002) Stepping out of the spotlight: MMN attenuation as a function of distance from the attended location. NeuroReport 13:2209–2212

    Article  PubMed  Google Scholar 

  • Astikainen P, Ruusuvirta T, Korhonen T (2000) Cortical and subcortical visual event-related potentials to oddball stimuli in rabbits. Neuroreport 11:1515–1517

    Article  CAS  PubMed  Google Scholar 

  • Bächlin M, Plotnik M, Roggen D et al (2010) Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans Inf Technol Biomed 14:436–446

    Article  PubMed  Google Scholar 

  • Baláž M, Rektor I, Pulkrábek J (2008) Participation of the subthalamic nucleus in executive functions: an intracerebral recording study. Mov Disord 23:553–557

    Article  PubMed  Google Scholar 

  • Baláž M, Srovnalová H, Rektorová I, Rektor I (2010) The effect of cortical repetitive transcranial magnetic stimulation on cognitive event-related potentials recorded in the subthalamic nucleus. Exp Brain Res 203:317–327

    Article  PubMed  Google Scholar 

  • Baláž M, Bočková M, Rektorová I, Rektor I (2011) Involvement of the subthalamic nucleus in cognitive functions—a concept. J Neurol Sci 310:96–99

    Article  PubMed  Google Scholar 

  • Bareš M, Rektor I (2001) Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clin Neurophysiol 112:2022–2030

    Article  PubMed  Google Scholar 

  • Bareš M, Rektor I, Kaňovský P, Streitová H (2003) Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm. Clin Neurophysiol 114:2447–2460

    Article  PubMed  Google Scholar 

  • Bočková M, Chládek J, Jurák P et al (2011) Involvement of the subthalamic nucleus and globus pallidus internus in attention. J Neural Transm 118:1235–1245

    Article  PubMed  Google Scholar 

  • Böttcher-Gandor C, Ullsperger P (1992) Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval. Psychophysiology 29:546–550

    Article  PubMed  Google Scholar 

  • Brønnick KS, Nordby H, Larsen JP, Aarsland D (2010) Disturbance of automatic auditory change detection in dementia associated with Parkinson’s disease: a mismatch negativity study. Neurobiol Aging 31:104–113

    Article  PubMed  Google Scholar 

  • Bronstein JM, Tagliati M, Alterman RL et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68:165

    PubMed  Google Scholar 

  • Butler JS, Molholm S, Fiebelkorn IC et al (2011) Common or redundant neural circuits for duration processing across audition and touch. J Neurosci 31:3400–3406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Celsis P, Boulanouar K, Doyon B et al (1999) Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage 9:135–144

    Article  CAS  PubMed  Google Scholar 

  • Chrastina J, Pulkrábek J, Rektor I, Novák Z (2004) Stimulation of the subthalamic nucleus in Parkinson’s disease patients (Stimulace nucleus subthalamicus u Parkinsonovy nemoci). Neurol pro praxi 5:71–73

    Google Scholar 

  • Claire L, Tomlinson CL, Stowe R, Patel S et al (2010) Systematic review of Levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653

    Article  Google Scholar 

  • Conte A, Modugno N, Lena F et al (2010) Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain 133:2656–2663

    Article  PubMed  Google Scholar 

  • Csépe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66:571–578

    Article  PubMed  Google Scholar 

  • Csépe V, Karmos G, Molnár M (1989) Subcortical evoked potential correlates of early information processing: mismatch negativity in cats. Springer Ser Brain Dyn 2:278–289

    Google Scholar 

  • Duncan CC, Barry RJ, Connolly JF et al (2009) Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908

    Article  PubMed  Google Scholar 

  • Escera C, Yago E, Polo MD, Grau C (2000) The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin Neurophysiol 111:546–551

    Article  CAS  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ et al (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. Neuroimage 36:571–580

    Article  PubMed Central  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640

    Article  CAS  PubMed  Google Scholar 

  • Gonsalvez CJ, Polich J (2002) P300 Amplitude is determined by target-to-target interval. Psychophysiology 39:388–396

    Article  PubMed  Google Scholar 

  • Hanajima R, Dostrovsky JO, Lozano AM et al (2004) Somatosensory evoked potentials (SEPs) recorded from deep brain stimulation (DBS) electrodes in the thalamus and subthalamic nucleus (STN). Clin Neurophysiol 115:424–434

    Article  PubMed  Google Scholar 

  • Heida T, Marani E, Usunoff KG (2008) The subthalamic nucleus: modelling and simulation of activity. Springer, New York

    Google Scholar 

  • Hruby T, Marsalek P (2003) Event-related potentials–the P3 wave. Acta Neurobiol Exp (Wars) 63:55–63

    Google Scholar 

  • Javitt DC, Schroeder CE, Steinschneider M et al (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83:87–90

    Article  CAS  PubMed  Google Scholar 

  • Kadivar Z, Corcos DM, Foto J, Hondzinski JM (2011) Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabil Neural Repair 25:626–635

    Article  PubMed  Google Scholar 

  • Kaji R, Urushihara R, Murase N et al (2005) Abnormal sensory gating in basal ganglia disorders. J Neurol 252 Suppl 4:IV13–IV16

    PubMed  Google Scholar 

  • Kaňovský P, Dufek J (2000) Evoked potentials in clinical practice (Evokované potenciály v klinické praxi). Institut pro další vzdělávání pracovníků ve zdravotnictví, Brno

    Google Scholar 

  • Kotz SA, Schwartze M, Schmidt-Kassow M (2009) Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. Cortex 45:982–990

    Article  PubMed  Google Scholar 

  • Kraus N (1994) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96:2758

    Article  CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Littman T et al (1994) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277

    CAS  PubMed  Google Scholar 

  • Kropotov JD, Nääänen R, Sevostianov AV et al (1995) Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology 32:418–422

    Article  CAS  PubMed  Google Scholar 

  • Kropotov JD, Alho K, Näätänen R et al (2000) Human auditory-cortex mechanisms of preattentive sound discrimination. Neurosci Lett 280:87–90

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Yoo JY, Ryu JS et al (2012) The effects of visual and auditory cues on freezing of gait in patients with Parkinson disease. Am J Phys Med Rehabil 91:2–11

    Article  PubMed  Google Scholar 

  • Leentjens AF, Verhey FR, Lousberg R et al (2000) The validity of the Hamilton and Montgomery-Asberg depression rating scales as screening and diagnostic tools for depression in Parkinson’s disease. Int J Geriatr Psychiatry 15:644–649

    Article  CAS  PubMed  Google Scholar 

  • Liasis A, Towell A, Boyd S (2000) Intracranial evidence for differential encoding of frequency and duration discrimination responses. Ear Hear 21:252–256

    Article  CAS  PubMed  Google Scholar 

  • Liasis A, Towell A, Alho K, Boyd S (2001) Intracranial identification of an electric frontal-cortex response to auditory stimulus change: a case study. Brain Res Cogn Brain Res 11:227–233

    Article  CAS  PubMed  Google Scholar 

  • Maess B, Jacobsen T, Schröger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571

    Article  PubMed  Google Scholar 

  • Marani E, Heida T, Lakke EAJF, Usunoff KG (2008) The subthalamic nucleus: development, cytology, topography and connections. Springer, New York

    Google Scholar 

  • Maruo T, Saitoh Y, Hosomi K et al (2011) Deep brain stimulation of the subthalamic nucleus improves temperature sensation in patients with Parkinson’s disease. Pain 152:860–865

    Article  PubMed  Google Scholar 

  • Monakow KH, Akert K, Künzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Article  CAS  PubMed  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, Hillsdale, London

    Google Scholar 

  • Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329

    Article  Google Scholar 

  • Näätänen R, Tervaniemi M, Sussman E et al (2001) “Primitive intelligence” in the auditory cortex. Trends Neurosci 24:283–288

    Article  PubMed  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  Google Scholar 

  • Näätänen R, Kujala T, Kreegipuu K et al (2011) The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 134:3432–3450

    Article  Google Scholar 

  • Näätänen R, Kujala T, Escera C et al (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123:424–458

    Article  PubMed  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16:2671–2683

    CAS  PubMed  Google Scholar 

  • Nanhoe-Mahabier W, Delval A, Snijders AH et al (2012) The possible price of auditory cueing: influence on obstacle avoidance in Parkinson’s disease. Mov Disord 27:574–578

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J (2006) Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res 173:650–660. doi:10.1007/s00221-006-0409-7

    Article  PubMed  Google Scholar 

  • Park A, Stacy M (2009) Non-motor symptoms in Parkinson’s disease. J Neurol 256(Suppl 3):293–298

    Article  PubMed  Google Scholar 

  • Pekkonen E (2000) Mismatch negativity in Aging and in Alzheimer’s and Parkinson’s diseases. Audiol Neurootol 5:216–224

    Article  CAS  PubMed  Google Scholar 

  • Pekkonen E, Jousmäki V, Reinikainen K, Partanen J (1995) Automatic auditory discrimination is impaired in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 95:47–52

    Article  CAS  PubMed  Google Scholar 

  • Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15:14–20

    Article  PubMed  Google Scholar 

  • Rektor I, Bareš M, Kubová D (2001) Movement-related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol 112:2146–2153

    Article  CAS  PubMed  Google Scholar 

  • Rektor I, Kaňovský P, Bareš M et al (2003) A SEEG study of ERP in motor and premotor cortices and in the basal ganglia. Clin Neurophysiol 114:463–471

    Article  CAS  PubMed  Google Scholar 

  • Rektor I, Bareš M, Kaňovský P et al (2004) Cognitive potentials in the basal ganglia-frontocortical circuits. An intracerebral recording study. Exp Brain Res 158:289–301

    Article  PubMed  Google Scholar 

  • Rektor I, Baláž M, Bočková M (2010) Cognitive event-related potentials and oscillations in the subthalamic nucleus. Neurodegener Dis 7:160–162

    Article  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Dietl T et al (2005) Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain 128:819–828

    Article  PubMed  Google Scholar 

  • Ruusuvirta T, Lipponen A, Pellinen E et al (2013) Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats. PLoS One 8:e54624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory trace persists about 10 sec: neuromagnetic evidence. J Cogn Neurosci 5:363–370

    Article  CAS  PubMed  Google Scholar 

  • Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32:1447–1452

    Article  CAS  PubMed  Google Scholar 

  • Sokolov EN, Vinogradova OS (1975) Neuronal mechanisms of the orienting reflex. Halsted Press, Australia

    Google Scholar 

  • Solís-Vivanco R, Ricardo-Garcell J, Rodríguez-Camacho M et al (2011) Involuntary attention impairment in early Parkinson’s disease: an event-related potential study. Neurosci Lett 495:144–149

    Article  PubMed  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–1188

    Article  CAS  PubMed  Google Scholar 

  • Telecká S, Baláž M, Rektorová I et al (2010) One year after deep brain stimulation in Parkinson’s disease patients—a neuropsychological outcome (Jeden rok po hluboké mozkové stimulaci pacientŭ s Parkinsonovou nemocí–neuropsychologické výsledky). Cesk Slov Neurol N 73:1

    Google Scholar 

  • Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76:393–413

    Article  CAS  PubMed  Google Scholar 

  • Vercruysse S, Spildooren J, Heremans E et al (2012) Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait. Neurorehabil Neural Repair 26:636–645

    Article  PubMed  Google Scholar 

  • Vieregge P, Verleger R, Wascher E et al (1994) Auditory selective attention is impaired in Parkinson’s disease—event-related evidence from EEG potentials. Cogn Brain Res 2:117–129

    Article  CAS  Google Scholar 

  • Waberski TD, Kreitschmann-Andermahr I, Kawohl W et al (2001) Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neurosci Lett 308:107–110

    Article  CAS  PubMed  Google Scholar 

  • Ziemssen T, Reichmann H (2007) Non-motor dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 13:323–332

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank our colleagues Marie Kopíčková, Ing. Pavel Daniel, Ing. Radek Mareček, Anna Hlučková, Dr. Marek Baláž, Ph.D., Mgr. Zuzana Hummelová and Dr. Martina Bočková, Ph.D. from the First Department of Neurology, and Ing. Ivo Říha from Department of Neurosurgery of St. Anne’s Hospital in Brno for their cooperation, remarks, and assistance. MRI, CT, X-ray image documentation are published with the consent of the Department of Medical Imaging, Faculty of Medicine, Masaryk University and St. Anne’s Hospital in Brno. We thank the Head of this department—Dr. Jiří Vaníček, PhD. We thank Dr. Alexandra Minksová for her help with editing the data and text, and above all for creating the conditions for writing this article. Finally, we thank the unnamed Reviewers for their important comments, which significantly improved our work. This study was supported by the project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund and by the Czech Ministry of Education Research Program MSM 0021622404. This work was partially supported by grant P103/11/0933 of the Grant Agency of the CR and EC and MEYS CR (project No. CZ.1.05/2.1.00/01.0017). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest and the authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bareš.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minks, E., Jurák, P., Chládek, J. et al. Mismatch negativity-like potential (MMN-like) in the subthalamic nuclei in Parkinson’s disease patients. J Neural Transm 121, 1507–1522 (2014). https://doi.org/10.1007/s00702-014-1221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1221-3

Keywords

Navigation