Skip to main content

Advertisement

Log in

Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We comparatively investigated predictive and reactive grip force behaviour in 12 subjects with basal ganglia dysfunction (six subjects with Parkinson’s disease, six subjects with writer’s cramp), two subjects chronically lacking all tactile and proprioceptive sensory feedback and 16 sex- and age-matched control subjects. Subjects held an instrumented receptacle between the index finger and thumb. A weight was dropped into the receptacle either unexpectedly from the experimenter’s hand with the subject being blindfolded or expectedly from the subject’s opposite hand. This paradigm allowed us to study predictive and reactive modes of grip force control. All patients generated an overshoot in grip force, irrespective of whether the weight was dropped expectedly or unexpectedly. When the weight was dropped from the experimenter’s hand, a reactive grip force response lagged behind the load perturbation at impact in patients with basal ganglia dysfunction and healthy controls. When the weight was dropped expectedly from the subject’s opposite hand, patients with basal ganglia dysfunction and healthy subjects started to increase grip force prior to the release of the weight, indicating a predictive mode of control. We interpret these data to support the notion that the motor dysfunction in basal ganglia disorders is associated with deficits of sensorimotor integration. Both deafferented subjects did not show a reactive mode of force control when the weight was dropped unexpectedly, underlining the importance of sensory feedback to initiate reactive force responses. Also in the predictive mode, grip force processing was severely impaired in deafferented subjects. Thus, at least intermittent sensory information is necessary to establish and update predictive modes of grasping force control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240

    Article  PubMed  Google Scholar 

  • Abbruzzese G, Marchese R, Trompetto C (1997) Sensory and motor evoked potentials in multiple system atrophy: a comparative study with Parkinson’s disease. Mov Disord 12:315–321

    Article  PubMed  CAS  Google Scholar 

  • Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C (2001) Abnormalities of sensorimotor integration in focal dystonia. A transcranial magnetic stimulation study. Brain 124:537–545

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Shelton P, Hallett M (2000) Spatial discrimination is abnormal in focal hand dystonia. Neurology 55:1869–1873

    PubMed  CAS  Google Scholar 

  • Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124:2131–2146

    Article  PubMed  CAS  Google Scholar 

  • Cole JD (1995) Pride and a daily marathon. MIT Press, Boston

    Google Scholar 

  • Cole JD, Sedgwick EM (1992) The perception of force and of movement in a man without large myelinated sensory afferents below the neck. J Physiol 449:503–515

    PubMed  CAS  Google Scholar 

  • Dugas C, Smith AM (1992) Responses of cerebellar Purkinje cells to slip of a hand-held object. J Neurophysiol 67:483–495

    PubMed  CAS  Google Scholar 

  • Fahn S, Elton R (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden C, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. MacMillan Health Care Information, Florham Park, pp 153–163

    Google Scholar 

  • Fellows SJ, Schwarz M, Noth J (1998) Precision grip in Parkinson’s disease. Brain 121:1771–1784

    Article  PubMed  Google Scholar 

  • Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J (2001) Precision grip in cerebellar disorders in man. Clin Neurophysiol 112:1793–1802

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Johansson RS (2002) Hand movements. In: Ramshandran VS (ed) Encyclopedia of the human brain, vol 2. Academic, San Diego, pp 399–414

  • Fleury M, Bard C, Teasdale N, Paillard J, Cole J, Lajoie Y, Lamarre Y (1995) Weight judgment. The discrimination capacity of a deafferented subject. Brain 118:1149–1156

    PubMed  Google Scholar 

  • Forget R, Lamarre Y (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Hum Neurobiol 6:27–37

    PubMed  CAS  Google Scholar 

  • Hermsdörfer J, Hagl E, Nowak DA (2004) Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum Mov Sci 23:643–662

    Article  PubMed  Google Scholar 

  • Hermsdörfer J, Nowak DA, Lee A, Rost K, Timmann D, Mühlau M, Boecker H (2005) The representation of predictive force control and internal forward models: evidence from lesion studies and brain imaging. Cogn Process 6:48–58

    Article  Google Scholar 

  • Jenner JR, Stephens JA (1982) Cutaneous reflex responses and their central nervous pathways studied in man. J Physiol (London) 333:405–419

    CAS  Google Scholar 

  • Jobst EE, Melnick ME, Byl NN, Dowling GA, Aminhoff MJ (1997) Sensory perception in Parkinson’s disease. Arch Neurol 54:450–454

    PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1988) Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res 71:72–86

    PubMed  CAS  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188

    Article  PubMed  Google Scholar 

  • Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A (1998) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121:451–457

    Article  PubMed  Google Scholar 

  • Mauguière F, Broussolle E, Isnard J (1993) Apomorphine-induced relief of the akinetic-rigid syndrome and early median nerve somatosensory evoked potentials (SEP’s) in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 88:243–254

    Article  PubMed  Google Scholar 

  • Monzee J, Smith AM (2004) Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol 91:1230–1239

    Article  PubMed  Google Scholar 

  • Nowak DA (2004) Different modes of grip force control: voluntary and externally guided arm movements with a hand-held load. Clin Neurophysiol 115:839–848

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J (2004) Predictability influences finger force control when catching a free-falling object. Exp Brain Res 154:411–416

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J (2005) Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord 20:11–25

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J, Glasauer S, Philipp J, Meyer L, Mai N (2001) The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci 14:756–762

    Article  PubMed  CAS  Google Scholar 

  • Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH (2002) Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res 145:28–39

    Article  PubMed  Google Scholar 

  • Nowak DA, Glasauer S, Hermsdörfer J (2004a) How predictive is grip force control in the complete absence of somatosensory feedback? Brain 127:182–192

    Article  Google Scholar 

  • Nowak DA, Hermsdörfer J, Rost K, Timmann D, Topka H (2004b) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3:227–235

    Article  Google Scholar 

  • Nowak DA, Rosenkranz K, Topka H, Rothwell J (2005) Disturbances of grip force behaviour in focal hand dystonia: evidence for a generalised impairment of sensory-motor integration? J Neurol Neurosurg Psychiatr 76:953–959

    Article  PubMed  CAS  Google Scholar 

  • Odergren T, Iwasaki N, Borg J, Forssberg H (1996) Impaired sensory-motor integration during grasping in writer’s cramp. Brain 119:569–583

    PubMed  Google Scholar 

  • Rost K, Nowak DA, Timmann D, Hermsdörfer J (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116:1405–1414

    Article  PubMed  Google Scholar 

  • Sanger TD, Pascual-Leone A, Tarsy D, Schaug G (2002) Nonlinear sensory cortex response to simultaneous tactile stimuli in writer’s cramp. Mov Disord 17:105–111

    Article  PubMed  Google Scholar 

  • Schneider JS, Diammond SG, Markham CH (1987) Parkinson’s disease: sensory and motor problems in arms and hands. Neurology 37:951–956

    PubMed  CAS  Google Scholar 

  • Serrien D, Burgunder JM, Wiesendanger M (2000) Disturbed sensorimotor processing during control of precision grip in patients with writer’s cramp. Mov Disord 15:965–972

    Article  PubMed  CAS  Google Scholar 

  • Sheehy MP, Marsden CD (1982) Writer’s cramp—a focal dystonia. Brain 105:461–480

    PubMed  Google Scholar 

  • Simoneau M, Paillard J, Bard C, Teasdale N, Martin O, Fleury M et al (1999) Role of the feedforward command and reafferent information in the coordination of a passing prehension task. Exp Brain Res 128:236–242

    Article  PubMed  CAS  Google Scholar 

  • Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017

    PubMed  CAS  Google Scholar 

  • Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A (2000) Abnormal central integration of dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 123:42–50

    Article  PubMed  Google Scholar 

  • Wenzelburger R, Zhang BR, Pohle S, Klebe S, Lorenz D, Herzog J, Wilms H, Deuschl G, Krack P (2002) Force overflow and levodopa-induced dyskinesias in Parkinson’s disease. Brain 125:871–879

    Article  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    Article  PubMed  CAS  Google Scholar 

  • Witney AG, Wing A, Thonnard JL, Smith AM (2004) The cutaneous contribution to adaptive precision grip. Trends Neurosci 27:637–643

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  Google Scholar 

  • Zia S, Cody F, O’Boyle D (2000) Joint position sense is impaired by Parkinson’s disease. Ann Neurol 47:218–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, D.A., Hermsdörfer, J. Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res 173, 650–660 (2006). https://doi.org/10.1007/s00221-006-0409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0409-7

Keywords

Navigation