Skip to main content
Log in

Application of a stochastic differential equation to the prediction of shoreline evolution

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Shoreline evolution due to longshore sediment transport is one of the most important problems in coastal engineering and management. This paper describes a method to predict the probability distributions of long-term shoreline positions in which the evolution process is based on the standard one-line model recast into a stochastic differential equation. The time-dependent and spatially varying probability density function of the shoreline position leads to a Fokker–Planck equation model. The behaviour of the model is evaluated by applying it to two simple shoreline configurations: a single long jetty perpendicular to a straight shoreline and a rectangular beach nourishment case. The sensitivity of the model predictions to variations in the wave climate parameters is shown. The results indicate that the proposed model is robust and computationally efficient compared with the conventional Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a 1 :

Constant in the expression for q 10 (m2 s2/kg)]

C gb :

Wave group celerity (m/s)

C v :

Coefficient of variance, 0 ≤ C v ≤ 1, defined as the ratio of the standard deviation to the mean

d :

Difference operator

D :

Variance vector

d b :

Breaker depth (m)

d c :

Closure depth (m)

D ij :

ith row and jth column component of D

E :

Expectation operator

E b :

Wave energy evaluated at the breaking point (kN)

g :

Acceleration due to gravity (m/s2)

G :

Deterministic operator of Itô equation

h b :

Discrete wave height at breaking (m)

H b :

Wave height at breaking (m)

H bm :

Mean of H b

H s :

Significant wave height (m)

i :

Alongshore cell number

j :

Cross-shore node number

k :

Time step of shoreline model

m :

Time step of FP model

k 1 :

Sediment transport coefficient or dimensionless empirical coefficient

K m :

Mean of H w

l :

Distance alongshore (m)

m y :

Number of the discrete distribution in cross-shore direction

N :

Normal distribution

n d :

Dimension of state space

n e :

Number of random parameters

n s :

Void ratio of sand

p :

Probability density function

p 0 :

Initial of p

q 1 :

Volumetric longshore sediment transport rate (m3/s)

q 10 :

Amplitude of volumetric longshore sediment transport rate (m3/s)

t :

Time (s)

T :

Transpose of a matrix

t 0 :

Initial time (s)

t k :

Time in kth step of one-line shoreline model (s)

t m :

Time in mth step of Thomas algorithm (s)

W :

Wiener process vector

W b :

Gaussian White noise of wave initial breaking angle

W i :

ith component of Wiener process W

W′:

Standard Gaussian White noise process of H b

x :

Distance alongshore (m)

y :

Shoreline position in cross-shore direction (m)

y :

Discrete stochastic process vector

Y :

Stochastic process or random variable of shoreline position or random state (which is a component of the state vector)

Y :

Stochastic process vector

y 0 :

Initial y

Y 0 :

Initial random state or random variable of shoreline position Y

Y 0 :

Initial Y

Y F :

Extension distance seaward from the rectangular beach

y i :

ith component of y

y m :

Mean of y

Y m :

Expected value or mean value of Y

y max :

Maximum discrete shoreline position

y min :

Minimum discrete shoreline position

y s :

Standard deviation of y

y s :

Standard deviation of y

\(\dot{\user2{Y}}\) :

Time derivative of Y

α 0 :

Incident angle of breaking waves relative to x (°)

α 0m :

Mean of incident angle of breaking waves relative to x (°)

α b :

Wave angle at the point of breaking (°)

γ :

Ratio of wave height to water depth at breaking, = H b/d b

Δt k :

Time increment of one-line shoreline model (s)

Δt m :

Time increment of Thomas algorithm (s)

Δx :

Size increment in alongshore direction [m]

Δy :

Size increment in cross-shore direction [m]

η :

Operator vector of determination of a dynamical state, may be determined by an appropriate deterministic shoreline evolution model

η i :

ith component of the operator η

κ :

Vector of drift

κ i :

ith component of κ

λ :

Ratio, \(=\frac{{\Delta t_{m} }}{{\Delta t_{k}}}\)

ρ s :

Mass density of the sediment grains (kg/m3)

ρ w :

Mass density of water (kg/m3)

\( \phi \) :

\( = \frac{1}{8}\rho_{\text{w}} g^{3/2} \gamma^{ - 1/2} a_{1} \frac{1}{{d_{\text{c}} }}\frac{{\partial \sin (2\alpha_{\text{b}} )}}{\partial x} \)

ψ :

\( = \frac{{\partial \left( {2\alpha_{{ 0 {\text{m}}}} - 2{ \arctan }\left( {\frac{\partial y}{\partial x}} \right)} \right)}}{\partial x} \)

ω :

\( = \frac{1}{8}\rho_{\text{w}} g^{3/2} \gamma^{ - 1/2} a_{1} \frac{1}{{d_{\text{c}} }} \)

References

  • Anderson JD (1995) Computational fluid dynamics: the basics with applications. McGrawHill, New York

    Google Scholar 

  • Anderson CW, Carter DJT, Cotton PD (2001) Wave climate variability and impact on offshore design extremes. Report prepared for Shell International, 2001

  • Asmussen S, Glynn PW (2007) Stochastic simulation. Algorithms and analysis. Stochastic modelling and applied probability. Springer, New York, pp 306–324

  • Banks HT, Davis JL, Ernstberger SL, Hu S, Artimovich E, Dhar AK, Browdy CL (2010) A comparison of probabilistic and stochastic formulations in modeling growth uncertainty and variability. J Biol Dyn 3:130–148

    Article  Google Scholar 

  • Battjes JA (1972) Long-term wave height distribution at seven stations around the British Isles. Deutsche Hydrographische Zeitschrift J 25:179–189

    Article  Google Scholar 

  • Bayram A, Larson M, Miller HC, Kraus NC (2001) Cross-shore distribution of longshore sediment transport: comparison between predictive formulas and field measurements. Coast Eng 44:79–99

    Article  Google Scholar 

  • Benassai E, Calabrese M, Sorgenti degli Uberti G (2001) A probabilistic prediction of beach nourishment evolution. In: MEDCOAST01, The 5th international conference on the Mediterranean Coastal Environment, Yasmine Beach Resort, Hammamet, Tunisia, October 23–27, 2001

  • Bodo BA, Thompson ME, Unny TE (1987) A review on stochastic differential equations for applications in hydrology. Stoch Hydrol Hydraul 1:81–100

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions, 1, model description and validation. J Geophys Res 104(C4):7649–7666

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc 26(B):211–252

    Google Scholar 

  • Camfield FE, Morang A (1996) Defining and interpreting shoreline change. Ocean Coast Manag 32:129–151

    Article  Google Scholar 

  • Cowell PJ, Roy PS, Jones RA (1992) Shoreface translation model: computer simulation of coastal-sand-body response to sea level rise. Math Comput Simul 33:603–608

    Article  Google Scholar 

  • Cowell PJ, Roy PS, Jones RA (1995) Simulation of large scale coastal change using a morphological behaviour model. Mar Geol 126:45–61

    Article  Google Scholar 

  • Cowell PJ, Thom BG, Jones RA, Everts CH, Simanovic D (2006) Management of uncertainty in predicting climate-change impacts on beaches. J Coast Res 22:232–245

    Article  Google Scholar 

  • Davies AG, van Rijn LC, Damgaard JS, van de Graaff J, Ribberink JS (2002) Intercomparison of research and practical sand transport models. Coast Eng 46:1–23

    Article  Google Scholar 

  • De Vriend H, Capobianco M, Chesher T, Swart HE, Latteux B, Stive M (1993) Approaches to long-term modelling of coastal morphology: a review. Coast Eng 21:225–269

    Article  Google Scholar 

  • Dean RG, Grant J (1989) Development of methodology for thirty-year shoreline projections in the vicinity of beach nourishment projects. UFL/COEL-89/026. University of Florida, Gainesville

  • Dong P, Chen H (1999) Probabilistic predictions of time dependent long-term beach erosion risks. Coast Eng 36:243–261

    Article  Google Scholar 

  • Dong P, Chen H (2000) A simple life-cycle method for predicting extreme shoreline erosion. Stoch Environ Res Risk Assess 14:79–89

    Article  Google Scholar 

  • Dostal L, Kreuzer E (2011) Probabilistic approach to large amplitude ship rolling in random seas. Proc Inst Mech Eng C 225:2464–2476

    Article  Google Scholar 

  • Einstein A (1905) Von der molekulärkinetischen theorie der eärme gefordete bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physike 17:549–554

  • Fernandes da Silva PC, Cripps JC (2008) Comparing directional line sets using non-parametric statistics: a new approach for geoenvironmental applications. Stoch Environ Res Risk Assess 22:231–246

    Article  Google Scholar 

  • Gardiner CW (2004) Handbook of stochastic methods: for physics, chemistry and the natural sciences, 3rd edn. Springer, Berlin

    Google Scholar 

  • Greer MN, Madsen OS (1978) Longshore sediment transport data: a review. In Proceedings of 16th international conference on coastal engineering, Hamburg, pp 1563–1576

  • Guedes Soares C (2003) Probabilistic models of waves in the coastal zone. Advances in coastal modeling. Elsevier, Amsterdam, pp 159–187

  • Guedes Soares C, Ferreira JA (1995) Modelling long-term distributions of significant wave height. In: Proceedings of the 14th international conference on offshore mechanics and arctic engineering. ASME, New York, pp 51–61

  • Guedes Soares C, Henriques AC (1996) Statistical uncertainty in long-term distributions of significant wave height. J Offshore Mech Arctic Eng 11:284–291

    Article  Google Scholar 

  • Guedes Soares C, Lopes LC, Costa M (1988) Wave climate modelling for engineering purposes. In: Schrefer B, Zienkiewicz O (eds) Computer modelling in ocean engineering. AA Balkema Publishers, The Netherlands, pp 169–175

    Google Scholar 

  • Hall JW, Meadowcroft IC, Lee EM, Van Gelder PHAJM (2002) Stochastic simulation of episodic soft coastal cliff recession. Coast Eng 46:159–174

    Article  Google Scholar 

  • Hanson H, Kraus NC (1989) GENESIS: Generalized Model for Simulating Shoreline Change, Report 1, Technical Report CERC-89-19. CERC, US Army WES, Vicksburg, MS

  • Horsthemke W, Lefever R (1980) A perturbation expansion for external wide band Markovian noise: application to transitions induced by Ornstein–Uhlenbeck noise. Z Phys B: Condens Matter 40:241–247

    Article  Google Scholar 

  • Horsthemke W, Lefever R (1984) Noise-induced transitions theory and applications in Physics, chemistry, and biology. Series: Springer Series in Synergetics, vol 15. Springer, New York, pp 65–81

  • Itô K (1951) Multiple Wiener integral. J Math Soc Japan 3:157–169

    Article  Google Scholar 

  • Jasper NH (1956) Statistical distribution patterns of ocean waves and of wave-induced ship stresses and motions, with engineering applications. Trans Soc Nav Archit Marine Eng 6:375–432

    Google Scholar 

  • Kamphuis JW (2000) Introduction to coastal engineering and management. World Scientific, Singapore

    Book  Google Scholar 

  • Kloeden PE, Platen E (1992) The numerical solution of stochastic differential equations. Springer, Berlin

    Book  Google Scholar 

  • Komar PD (1983) Handbook of coastal processes and erosion. CRC Press, Boca Raton

    Google Scholar 

  • Kontorovich VY, Lyandres VZ (1995) Stochastic differential equations: an approach to the generation of continuous non-Gaussian processes. IEEE Trans Signal Process 43:2372–2385

    Article  Google Scholar 

  • Kubo R (1963) Stochastic Liouville equations. J Math Phys 4:174–183

    Article  Google Scholar 

  • Larson M, Kraus NC (1994) Temporal and spatial scales of beach profile change, Duck, North Carolina. Mar Geol 117:75–94

    Article  Google Scholar 

  • Pelnard-Considère R (1956) Essai de Theorie de I’Evolution des Formes de Rivage en Plages de Sables et de Galets. Fourth Journess de I’Hydralique, les energies de la Mer Question III, Rapport 1:289–298

    Google Scholar 

  • Pilkey OH, Cooper J, Andrew G (2002) Longshore transport volumes: a critical view. J Coast Res Special Issue 36:572–580

    Google Scholar 

  • Reeve DE, Spivack M (2004) Evolution of shoreline position moments. Coast Eng 51:661–673

    Article  Google Scholar 

  • Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions, 2, verification. J Geophys Res 104(C4):7667–7681

    Article  Google Scholar 

  • Risken H (1984) The Fokker–Planck equation. Springer, Berlin

    Book  Google Scholar 

  • Rosati JD, Kraus NC (1991) Practical considerations in longshore transport calculations. CETN II-24. U.S. Army Engineer Waterways Experiment Station, Coastal and Hydraulics Laboratory, Vicksburg, MS

  • Ruggiero P, List JH (2009) Improving accuracy and statistical reliability of shoreline position and change rate estimates. J Coast Res 25:1069–1081

    Article  Google Scholar 

  • Ruggiero P, List J, Hanes DM, Eshleman J (2006) Probabilistic shoreline change modeling. In: 30th international conference on coastal engineering. ASCE, San Diego, CA, pp 3417–3429

  • Rychlik I, Johannesson P, Leadbetter MR (1997) Modelling and statistical analysis of ocean-wave data using transformed Gaussian processes. Marine Struct 10:13–47

    Article  Google Scholar 

  • Sancho JM, San Migue M (1980) External non-white noise and nonequilibrium phase transitions. Z Phys B: Condens Matter 36:357–364

    Google Scholar 

  • Schoonees JS, Theron AK (1994) Accuracy and applicability of the SPM longshore transport formula. In: Proceedings of 24th international conference on coastal enginering, ASCE, pp 2595–2609

  • Sobczyk K (1991) Stochastic differential equations with applications to physics and engineering. Kluwer, Dordrecht

    Google Scholar 

  • Soong TT (1973) Random differential equations in science and engineering. Academic Press, New York

    Google Scholar 

  • Southgate HN (1995) The effects of wave chronology on medium and long term coastal morphology. Coast Eng 26:251–270

    Article  Google Scholar 

  • Spencer BF Jr, Bergman LA (1993) On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems. Nonlinear Dyn 4:357–372

    Article  Google Scholar 

  • Stive MJF, Aarninkhof SGJ, Hamm L, Hanson H, Larson M, Wijnberg KM, Nicholls RJ, Capobianco M (2002) Variability of shore and shoreline evolution. Coast Eng 47:211–235

    Article  Google Scholar 

  • Sura P (2003) Stochastic analysis of Southern and Pacific Ocean sea surface winds. J Atmos Sci 60:654–666

    Article  Google Scholar 

  • Unny TE, Karmeshu K (1984) Stochastic nature of outputs from conceptual reservoir model cascades. J Hydrol 68:161–180

    Article  Google Scholar 

  • US Army Corps of Engineers (1984) Shore protection manual. Coastal Engineering Research Center, Washington

    Google Scholar 

  • US Army Corps of Engineers (2002) Coastal engineering manual, Part III, coastal sediment processes, Chapter III-2: longshore sediment transport. US Army Corps of Engineers, Washington

  • van der Berg E, Heemink AW, Lin HX, Schoenmakers JGM (2005) Probability density estimation in stochastic environmental models using reverse representations. Stoch Environ Res Risk Assess 20:126–134

    Article  Google Scholar 

  • Vanem E (2010) Long-term time-dependent stochastic modelling of extreme waves. Stoch Environ Res Risk Assess 25:185–209

    Article  Google Scholar 

  • Vanem E, Huseby AB, Natvig B (2012) A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic. Stoch Environ Res Risk Assess 26:609–632

    Article  Google Scholar 

  • von Smoluchowski M (1906) Zur kinetischen theorie der brownschen molekulärbewegung und der suspensionen. Annalen der Physike 21:756–780

    Google Scholar 

  • Vrijling JK, Meijer GJ (1992) Probabilistic coastline position computations. Coast Eng 17:1–23

    Article  Google Scholar 

  • Walton TL Jr (2007) Storm protection beach fill planning on barrier islands. Shore Beach 75:43–48

    Google Scholar 

  • Wang HF, Anderson MA (1982) Introduction to groundwater modeling: finite difference and finite element methods. W.H. Freeman and Co., San Francisco

    Google Scholar 

  • Wehner MF, Wolfer WG (1983) Numerical evaluation of path integral solutions to the Fokker–Planck equations. Phys Rev 27:2663–2670

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the UK Engineering and Physical Science Research Council as part of Grant No. GR\L53953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zheng Wu.

Appendix 1: The theoretical framework for a general stochastic system

Appendix 1: The theoretical framework for a general stochastic system

For a real field site where sediment transport pathways are parallel or shore-normal (both have significant components in two or three dimensions), the simplification made by the one-line alongshore model is unlikely to produce an accurate prediction for the variability of the coastal spatial configurations. In this case, a multi-dimensional deterministic numerical model can be incorporated into this modelling framework, involving a stochastic process of an initial state and some model parameters along these lines. For such a random dynamic coastal system, a more specific model that characterises a Markovian process is often adopted, which is obtained by a decomposition as the similar formulation with Eq. (12):

$$ {\dot{\mathbf{Y}}}(x,t) = {\varvec{\kappa}}({\mathbf{Y}},t) + {\mathbf{G}}({\mathbf{Y}},t){\mathbf{W}}(t) $$
(20)

where \( {\mathbf{Y}} = (Y_{1} ,Y_{2} , \ldots ,Y_{{n_{\text{d}} }} )^{\text{T}} \) is the state vector, n d is the dimension of the state space, κ(Y,t) is a function vector representing the effects of some form of drift, G(Y,t) is a function vector representing the effects of random diffusion, and W(t) is a n e-dimensional Gaussian (or white) noise vector. Assuming that the white noise processes are mutually independent, the co-variance parameter matrix of W(t) will be a diagonal matrix with its diagonal terms equal to the variance of the white noise processes \( W_{1} (t),W_{2} (t), \ldots ,W_{{n_{\text{e}} }} (t) \) and \( {\mathbf{D}} = (D_{11} ,D_{22} , \ldots ,D_{{n_{\text{e}} n_{\text{e}} }} ) \).

Equation (20) can also be written in the vector form of the standard Itô equation (see Soong 1973):

$$ {\text{d}}{\mathbf{Y}}(x,t) = {\varvec{\kappa}}({\mathbf{Y}},t){\text{d}}t + {\mathbf{G}}({\mathbf{Y}},t){\text{d}}{\mathbf{W}}(t) $$
(21)

with E{dW(t)} = 0 and E{[dW(t)]2} = 2Ddt.

The dynamical system described by Eq. (21) with the deterministic operators κ and G driven by some expressions of sediment transport, the evolutionary PDFs of the shoreline position Y, p(y,t), will satisfy the FP equation (Soong 1973; Gardiner 2004):

$$ \frac{{\partial p({\mathbf{y}},t\left| {{\mathbf{y}}_{0} ,t} \right.)}}{\partial t} = - \sum\limits_{j = v}^{{n_{\text{d}} }} {\frac{\partial }{{\partial y_{v} }}\left[ {\eta (y,t)_{v} p} \right]} + \frac{1}{2}\sum\limits_{u,v = 1}^{{n_{\text{d}} }} {\frac{{\partial^{2} }}{{\partial y_{v} \partial y_{u} }}\left[ {(GDG^{T} )_{uv} p} \right]} $$
(22)

The term (GDG T) uv is given by:

$$(GDG^{\text{T}})_{uv}=\sum\limits_{k,l=1}^{{n_{\text{e}}}}{D_{kl}G_{uk} (y,t)G_{vl} (y,t)}\quad (u,v=1,2,\ldots,n_{\text{d}}),\;\;(k,l = 1,2, \ldots ,n_{\text{e}})$$
(23)

where G uk and G vl are components of G(y,t).

The theoretical framework described above is formulated into a stochastic shoreline evolution model to use for a n d-dimensional SDE with a n e-dimensional Wiener process. In these working examples, the state function vector is derived using the one-line model, which means that only longshore transport is considered to contribute to the shoreline changes, implying n d = 1. For simplicity’s sake, only the characteristic wave height parameter is taken as a random parameter, implying n e = 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, P., Wu, X.Z. Application of a stochastic differential equation to the prediction of shoreline evolution. Stoch Environ Res Risk Assess 27, 1799–1814 (2013). https://doi.org/10.1007/s00477-013-0715-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0715-0

Keywords

Navigation