Skip to main content

Advertisement

Log in

Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

One of the most important issues in orthopaedic surgery is the loss of bone resulting from trauma, infections, tumours or congenital deficiency. In view of the hypothetical future application of mesenchymal stem cells isolated from human adipose tissue in regenerative medicine, we have analysed and characterized adipose-derived stem cells (ASCs) isolated from adipose tissue of rat, rabbit and pig. We have compared their in vitro osteogenic differentiation abilities for exploitation in the repair of critical osteochondral defects in autologous pre-clinical models. The number of pluripotent cells per millilitre of adipose tissue is variable and the yield of rabbit ASCs is lower than that in rat and pig. However, all ASCs populations show both a stable doubling time during culture and a marked clonogenic ability. After exposure to osteogenic stimuli, ASCs from rat, rabbit and pig exhibit a significant increase in the expression of osteogenic markers such as alkaline phosphatase, extracellular calcium deposition, osteocalcin and osteonectin. However, differences have been observed depending on the animal species and/or differentiation period. Rabbit and porcine ASCs have been differentiated on granules of clinical grade hydroxyapatite (HA) towards osteoblast-like cells. These cells grow and adhere to the scaffold, with no inhibitory effect of HA during osteo-differentiation. Such in vitro studies are necessary in order to select suitable pre-clinical models to validate the use of autologous ASCs, alone or in association with proper biomaterials, for the repair of critical bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrigoni E, Lopa S, de Girolamo L, Stanco D, Brini AT (2009) Mesenchymal stem cells from adipose tissue (ASCs) in pre-clinical models: tissue engineering for bone regeneration. In: Bártolo PJ et al (eds) Proceedings of the International Conference on Tissue Engineering. ICTE 2009, Leiria, Portugal, July 9-11, 2009. pp. 73–79

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  CAS  PubMed  Google Scholar 

  • Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res Part C Embryo Today 69:250–256

    Article  CAS  Google Scholar 

  • Bodo M, Lilli C, Bellucci C, Carinci P, Calvitti M, Pezzetti F, Stabellini G, Bellocchio S, Balducci C, Carinci F, Baroni T (2002) Basic fibroblast growth factor autocrine loop controls human osteosarcoma phenotyping and differentiation. Mol Med 8:393–404

    CAS  PubMed  Google Scholar 

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, March KL (2009) Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infraction, in conjunction with potent preservation of cardiac function. Stem Cells 27:230–237

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  CAS  PubMed  Google Scholar 

  • Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR (2009) Mesenchymal stem cells concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am 91A:1073–1083

    Article  Google Scholar 

  • de Girolamo L, Sartori MF, Albisetti W, Brini AT (2007) Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. J Tissue Eng Regen Med 1:154–157

    Article  PubMed  Google Scholar 

  • de Girolamo L, Sartori MF, Arrigoni E, Rimondini L, Albisetti W, Weinstein RL, Brini AT (2008) Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction. Int J Artif Organs 31:467–479

    PubMed  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Dudas JR, Marra KG, Cooper GM, Penascino VM, Mooney MP, Jiang S, Rubin JP, Losee JE (2006) The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann Plast Surg 56:543–548

    Article  CAS  PubMed  Google Scholar 

  • Funk JF, Matziolis G, Krocker D, Perka C (2007) Promotion of bone healing through clinical application of autologous periosteum derived stem cells in a case of atrophic non-union. Z Orthop Unfall 145:790–794

    Article  CAS  PubMed  Google Scholar 

  • Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7:729–741

    Article  CAS  PubMed  Google Scholar 

  • Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4:34–43

    Article  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207:267–274

    Article  CAS  PubMed  Google Scholar 

  • Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 35:892–898

    Article  PubMed  Google Scholar 

  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    Article  PubMed  Google Scholar 

  • Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32:370–373

    PubMed  Google Scholar 

  • Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, Mosca JD (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3382

    Article  CAS  PubMed  Google Scholar 

  • Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38:201–209

    Article  PubMed  Google Scholar 

  • Nöth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20:1060–1069

    Article  PubMed  Google Scholar 

  • Peptan IA, Hong L, Mao JJ (2006) Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plast Reconstr Surg 117:1462–1470

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Qu CQ, Zhang GH, Zhang LJ, Yang GS (2007) Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells. In Vitro Cell Dev Biol Anim 43:95–100

    Article  CAS  PubMed  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  PubMed  Google Scholar 

  • Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422

    Article  CAS  PubMed  Google Scholar 

  • Smietana MJ, Syed-Picard FN, Ma J, Kostrominova T, Arruda EM, Larkin LM (2009) The effect of implantation on scaffoldless three-dimensional engineered bone constructs. In Vitro Cell Dev Biol Anim 45:512–522

    Article  PubMed  Google Scholar 

  • Tholpady SS, Katz AJ, Ogle RC (2003) Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec 272:398–402

    Article  CAS  Google Scholar 

  • Tobita M, Uysal AC, Ogawa R, Hyakusoku H, Mizuno H (2008) Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng 14:945–953

    Article  CAS  Google Scholar 

  • Torres FC, Rodrigues CJ, Stocchero IN, Ferreira MC (2007) Stem cells from the fat tissue of rabbits: an easy-to-find experimental source. Aesthetic Plast Surg 31:574–578

    Article  PubMed  Google Scholar 

  • Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622

    Article  PubMed  Google Scholar 

  • Wu X, Peters JM, Gonzalez FJ, Prasad HS, Rohrer MD, Gimble JM (2000) Frequency of stromal lineage colony forming units in bone marrow of peroxisome proliferator-activated receptor-alpha-null mice. Bone 26:21–26

    Article  CAS  PubMed  Google Scholar 

  • Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR (2007) In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng 13:619–627

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K (2008a) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34:1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2008b) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32:48–55

    Article  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Alessandro Addis, Carlo Sala, Giuseppe Rossoni, Patrizia Rosa and Permedica S.p.a. (Merate, LC, Italy) for providing us with experimental material and to Filippo Perbellini and Giuliana Gatti for their invaluable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna T. Brini.

Additional information

This study was partially supported by grants from PRIN 2006 (area 09, prot. 2006091907_003, Italian Ministry of University and Research), FIRST 2007 and RF-IOG-2007-656853.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrigoni, E., Lopa, S., de Girolamo, L. et al. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res 338, 401–411 (2009). https://doi.org/10.1007/s00441-009-0883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0883-x

Keywords

Navigation