Skip to main content

Advertisement

Log in

Distinguishing lower and upper crustal processes in magmas erupted during the buildup to the 7.7 ka climactic eruption of Mount Mazama, Crater Lake, Oregon, using 238U–230Th disequilibria

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Uranium-series isotope ratios determined for 35 volcanic rocks and 4 glass separates erupted from ~36 to 4.8 ka at Mt. Mazama, Crater Lake, Oregon, identify both 230Th-excess and 238U-excess components. U–Th isotope compositions cover a wide range, exceeding those previously measured for the Cascade arc. Age-corrected (230Th/232Th) and (238U/232Th) activity ratios range from 1.113 to 1.464 and from 0.878 to 1.572 (44.4 % 230Th-excess to 8.8 % 238U-excess), respectively. The most distinctive aspect of the data set is the contrast in U–Th isotope ratios between low and high Sr (LSr, HSr) components that have been previously identified in products of the 7.7 ka caldera-forming climactic eruption and preclimactic rhyodacite lavas. The LSr component exclusively contains 238U-excess, but the HSr component, as well as more primitive lavas, are marked by 230Th-excess. 230Th-excesses such as those recorded at Mt. Mazama are commonly observed in the Cascades. Melting models suggest that high 230Th-excesses observed in the more primitive lavas evolved through mixing of a mantle melt with a partial melt of a mafic lower crustal composition that contained garnet in the residuum that was produced through dehydration melting of amphibolite that was initially garnet free. Dehydration melting in the lower crust offers a solution to the “hot-slab paradox” of the Cascades, where low volatile contents are predicted due to high slab temperatures, yet higher water contents than expected have been documented in erupted lavas. The 238U-excess observed at Mt. Mazama is rare in Cascade lavas, but occurs in more than half of the samples analyzed in this study. Traditionally, 238U-excess in arc magmas is interpreted to reflect slab fluid fluxing. Indeed, 238U-excess in arcs is common and likely masks 230Th-excess resulting from lower crustal interaction. Isotopic and trace element data, however, suggest a relatively minor role for slab fluid fluxing in the Cascades. We propose that 238U-excess reflects melting and assimilation of young, hydrothermally altered upper crust. The processes related to generating 238U-excess are likely important features at Mt. Mazama that accompanied development of a large-scale silicic magma chamber that led to the caldera-forming eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955

    Article  Google Scholar 

  • Annen C, Blundy J, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Aramaki S (1984) Formation of the Aira caldera, southern Kyushu, ≈22,000 years ago. J Geophys Res 89:8485–8501

    Article  Google Scholar 

  • Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles Island arc. J Petrol 21:743–799

    Article  Google Scholar 

  • Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J Volcanol Geoth Res 18:57–118

    Article  Google Scholar 

  • Bacon CR (1990) Calc-alkaline, shoshonitic and primitive tholeiitic lavas from monogenetic volcanoes near Crater Lake, Oregon. J Petrol 31:135–166

    Article  Google Scholar 

  • Bacon CR (2008) Geologic map of Mount Mazama and Crater Lake caldera, Oregon: U.S. Geological Survey Scientific Investigations Map 2832, 4 sheets, scale 1:24,000, 45 p. pamphlet http://pubs.usgs.gov/sim/2832/

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Miner Petrol 98:224–256

    Article  Google Scholar 

  • Bacon CR, Lanphere MA (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol Soc Am Bull 118:1331–1359

    Article  Google Scholar 

  • Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233:277–293

    Article  Google Scholar 

  • Bacon CR, Adami LH, Lanphere MA (1989) Direct evidence for the origin of low-18O silicic magmas: quenched samples of a magma chamber’s partially-fused granitoid walls, Crater Lake, Oregon. Earth Planet Sci Lett 96:199–208

    Article  Google Scholar 

  • Bacon CR, Gunn SH, Lanphere MA, Wooden JL (1994) Multiple isotopic components in Quaternary volcanic rocks of the Cascade arc near Crater Lake, Oregon. J Petrol 35:1521–1556

    Article  Google Scholar 

  • Bacon C, Bruggman P, Christiansen R, Clynne M, Donnelly-Nolan J, Hildreth W (1997) Primitive magmas at five Cascade volcanic fields: melts from hot heterogeneous sub-arc mantle. Can Mineral 35:397–423

    Google Scholar 

  • Bacon CR, Persing HM, Wooden JL, Ireland TR (2000) Late pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe. Geology 28:467–470

    Article  Google Scholar 

  • Bacon CR, Gardner J, Mayer L, Buktenica M, Dartnell P, Ramsey D, Robinson J (2002) Morphology, volcanism, and mass wasting in Crater Lake, Oregon. Geol Soc Am Bull 114:675–692

    Article  Google Scholar 

  • Bacon CR, Sisson TW, Mazdab FK (2007) Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology 35:491–494

    Article  Google Scholar 

  • Bartels KS, Kinzler RJ, Grove TL (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Miner Petrol 108:253–270

    Article  Google Scholar 

  • Bennett JT, Krishnaswami S, Turekian KK, Melson WG, Hopson CA (1982) The uranium and thorium decay series nuclides in Mt. St. Helens effusives. Earth Planet Sci Lett 60:61–69

    Article  Google Scholar 

  • Berger J, Caby R, Liégeois J-P, Mercier J-CC, Demaiffe D (2009) Dehydration, melting and related garnet growth in the deep root of the Amalaoulaou Neoproterozoic magmatic arc (Gourma, NE Mali). Geol Mag 146:173–186

    Article  Google Scholar 

  • Berlo K, Turner S, Blundy J, Hawkesworth C (2004) The extent of U-series disequilibria produced during partial melting of the lower crust with implications for the formation of the Mount St. Helens dacites. Contrib Miner Petrol 148:122–130

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2000) Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28:719–722

    Article  Google Scholar 

  • Bindeman IN, Fournelle JH, Valley JW (2001) Low-δ18O tephra from a compositionally zoned magma body: Fisher Caldera, Unimak Island, Aleutians. J Volcanol Geoth Res 111:35–53

    Article  Google Scholar 

  • Blackwell DD, Steele JL, Kelley S (1990) Heat flow in the state of Washington and thermal conditions in the Cascade range. J Geophys Res 95:19495–19516

    Article  Google Scholar 

  • Blundy JD, Wood BJ (2003) Mineral-melt partitioning of uranium, thorium, and their daughters. In: Bourdon B, Henderson GM, Lundsrom CC, Turner SP (eds) Uranium-series geochemistry, vol 52. Reviews in Mineralogy and Geochemistry, pp 59–123

  • Borg LE, Clynne MA, Bullen TD (1997) The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California. Can Mineral 35:425–452

    Google Scholar 

  • Borg LE, Blichert-Toft J, Clynne MA (2002) Ancient and modern subduction zone contributions to the mantle sources of lavas from the Lassen region of California inferred from Lu–Hf isotopic systematics. J Petrol 43:705–723

    Article  Google Scholar 

  • Bruggman PE, Bacon CR, Aruscavage PJ, Lerner RW, Schwarz LJ, Stewart KC (1987) Chemical analyses of rocks and glass separates from Crater Lake National Park and vicinity, Oregon. US Geol Surv Open-File Rep 38:57–87

    Google Scholar 

  • Bruggman PE, Bacon CR, Mee JS, Pribble ST, Siems DF (1989) Chemical analyses of volcanic rocks from monogenetic and shield volcanoes near Crater Lake, Oregon. US Geol Surv Open-File Rep 17:93–314

    Google Scholar 

  • Buntebarth G (1976) Distribution of uranium in intrusive bodies due to combined migration and diffusion. Earth Planet Sci Lett 32:84–90

    Article  Google Scholar 

  • Carroll MR, Wyllie PJ (1989) Experimental phase relations in the system tonalite-peridotite-H2O at 15 kbar; implications for assimilation and differentiation processes near the crust-mantle boundary. J Petrol 30:1351–1382

    Article  Google Scholar 

  • Cheang K, Wenner D, JS S (1985) Oxygen isotope studies of hydrothermal alteration and uranium migration in the Granite Mountains, Wyoming, U.S.A. In: Institution of mining and metallurgy, London, London, United Kingdom (GBR), pp 33–40

  • Clynne MA (1990) Stratigraphic, lithologic, and major element geochemical constraints on magmatic evolution at Lassen Volcanic Center, California. J Geophys Res 95:19651–19669

    Article  Google Scholar 

  • Cohen JF (2011) Mineralogy and geochemistry of hydrothermal alteration at the Ann-Mason porphyry copper deposit, Nevada: comparison of large-scale ore exploration techniques to mineral chemistry. Dissertation, Oregon State University

  • Conrey RM, Sherrod DR, Hooper PR, Swanson DA (1997) Diverse primitive magmas in the Cascade arc, northern Oregon and southern Washington. Can Mineral 35:367–396

    Google Scholar 

  • Conrey RM, Hooper PR, Larson PB, Chesley J, Ruiz J (2001) Trace element and isotopic evidence for two types of crustal melting beneath a High Cascade volcanic center, Mt. Jefferson, Oregon. Contrib Mineral Petrol 141:710–732

    Article  Google Scholar 

  • Criss RE, Taylor HP Jr (1983) An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith. Geol Soc Am Bull 94:640–663

    Article  Google Scholar 

  • Cunningham HS, Turner SP, Dosseto A, Patia H, Eggins SM, Arculus RJ (2009) Temporal variations in U-series disequilibria in an active Caldera, Rabaul, Papua New Guinea. J Petrol 50:507–529

    Article  Google Scholar 

  • Davidson JP, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • DeBari S, Coleman R (1989) Examination of the deep levels of an island-arc—evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res–Solid Earth Planets 94:4373–4391

    Article  Google Scholar 

  • Dreher S, Eichelberger J, Larsen J (2005) The petrology and geochemistry of the Aniakchak caldera-forming ignimbrite, Aleutian arc, Alaska. J Petrol 46:1747–1768

    Article  Google Scholar 

  • Druitt TH, Bacon CR (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Miner Petrol 101:245–259

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J Petrol 46:2167–2195

    Article  Google Scholar 

  • Elkins LJ, Gaetani GA, Sims KWW (2008) Partitioning of U and Th during garnet pyroxenite partial melting: constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett 265:270–286

    Article  Google Scholar 

  • Elkins-Tanton LT, Grove TL, Donnelly-Nolan JM (2001) Hot, shallow mantle melting under the Cascades volcanic arc. Geology 29:631–634

    Article  Google Scholar 

  • Finney B, Turner S, Hawkesworth C, Larsen J, Nye C, George R, Bindeman I, Eichelberger J (2008) Magmatic differentiation at an island-arc caldera: Okmok volcano, Aleutian Islands, Alaska. J Petrol 49:857–884

    Article  Google Scholar 

  • Gao H, Humphreys ED, Yao H, Van der Hilst RD (2011) Crust and lithosphere structure of the northwestern U.S. with ambient noise tomography: Terrane accretion and Cascade arc development. Earth Planet Sci Lett 304:202–211

    Article  Google Scholar 

  • Garrison J, Davidson JP, Reid MR, Turner S (2006) Source versus differentiation controls on U-series disequilibria: insights from Cotopaxi Volcano, Ecuador. Earth Planet Sci Lett 244:548–565

    Article  Google Scholar 

  • George R, Turner S, Hawkesworth C, Morris J, Nye C, Ryan J, Zheng S-H (2003) Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U-Th–Ra–Be isotope study. J Geophys Res 108:6.1–6.25

    Article  Google Scholar 

  • George R, Turner S, Hawkesworth C, Bacon CR, Nye C, Stelling P, Dreher S (2004) Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc. J Petrol 45:203–219

    Article  Google Scholar 

  • Gosnold WD (1987) Redistribution of U and Th in shallow plutonic environments. Geophys Res Lett 14:291–294

    Article  Google Scholar 

  • Grove TL, Kinzler RJ, Baker MB, Donnelly-Nolan JM, Lesher CE (1988) Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: decoupling of heat and mass transfer. Contrib Miner Petrol 99:320–343

    Article  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Miner Petrol 142:375–396

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533

    Article  Google Scholar 

  • Guthrie V (1991) Determination of recent 238U, 234U, and 230Th mobility in granitic rocks: application of a natural analogue to the high-level waste repository environment. Appl Geochem 6:63–74

    Article  Google Scholar 

  • Harris RA, Iyer HM, Dawson PB (1991) Imaging the Juan de Fuca plate beneath southern Oregon using teleseismic P wave residuals. J Geophys Res 96:19879–19889

    Article  Google Scholar 

  • Harry DL, Green NL (1999) Slab dehydration and basalt petrogenesis in subduction systems involving very young oceanic lithosphere. Chem Geol 160:309–333

    Article  Google Scholar 

  • Hart WK, Aronson JL, Mertzman SA (1984) Areal distribution and age of low-K, high-alumina olivine tholeiite magmatism in the northwestern Great Basin. Geol Soc Am Bull 95:186–195

    Article  Google Scholar 

  • Hart GL, Johnson CM, Shirey SB, Clynne MA (2002) Osmium isotope constraints on lower crustal recycling and pluton preservation at Lassen Volcanic Center, CA. Earth Planet Sci Lett 199:285–296

    Article  Google Scholar 

  • Hart GL, Johnson CM, Hildreth W, Shirey SB (2003) New osmium isotope evidence for intra-crustal recycling of crustal domains with discrete ages. Geology 31:427–430

    Article  Google Scholar 

  • Hildalgo PJ, Rooney TO (2010) Crystal fractionation processes at Baru volcano from the deep to shallow crust. Geochem Geophys Geosyst 11:Q12S30

    Google Scholar 

  • Hildreth W (1994) Ignimbrite-filled Quaternary caldera in the North Cascades, Washington. Eos (Trans Am Geophys Union) 26:367–368

  • Hildreth W (1996) Kulshan caldera: a Quaternary subglacial caldera in the North Cascades, Washington. Geol Soc Am Bull 108:786–793

    Article  Google Scholar 

  • Hildreth W (2007) Quaternary magmatism in the Cascades-geologic perspectives. US Geol Surv Prof Pap 1744:125

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Miner Petrol 98:455–489

    Article  Google Scholar 

  • Hildreth W, Lanphere MA, Champion DE, Fierstein J (2004) Rhyodacites of the Kulshan caldera, north Cascades of Washington: postcaldera lavas that span the Jaramillo. J Volcanol Geoth Res 130:227–264

    Article  Google Scholar 

  • Hoogewerff JA, Van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997) U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone: implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61:1057–1072

    Article  Google Scholar 

  • Hughes GR, Mahood GA (2011) Silicic calderas in arc settings: characteristics, distribution, and tectonic controls. Geol Soc Am Bull 123:1577–1595

    Article  Google Scholar 

  • Hughes SS, Taylor EM (1986) Geochemistry, petrogenesis, and tectonic implications of central High Cascade mafic platform lavas. Geol Soc Am Bull 97:1024–1036

    Article  Google Scholar 

  • Ishikawa T, Katsui Y, Oba Y (1969) Some problems of the calderas in Hokkaido. Volcan Soc Jpn Bull 14:96–108

    Google Scholar 

  • Jicha BR, Singer B, Brophy J, Fournelle J, Johnson C, Beard B, Lapen T, Mahlen N (2004) Variable impact of the subducted slab on Aleutian Island arc magma sources: evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances. J Petrol 45:1845–1875

    Article  Google Scholar 

  • Jicha BR, Singer BS, Beard BL, Johnson CM (2005) Contrasting timescales of crystallization and magma storage beneath the Aleutian Island arc. Earth Planet Sci Lett 236:195–210

    Article  Google Scholar 

  • Jicha BR, Singer BS, Beard BL, Johnson CM, Moreno-Roa H, Naranjo J-A (2007) Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue-Cordon Caulle, Southern Volcanic Zone, Chile. Earth Planet Sci Lett 255:229–242

    Article  Google Scholar 

  • Jicha BR, Hart GL, Johnson CM, Hildreth W, Beard BL, Shirey SB, Valley JW (2009a) Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington. Contrib Miner Petrol 157:189–207

    Article  Google Scholar 

  • Jicha BR, Johnson CM, Hildreth W, Beard BL, Hart GL, Shirey SB, Singer BS (2009b) Discriminating assimilants and decoupling deep- vs. shallow-level crystal records at Mount Adams using 238U–230Th disequilibria and Os isotopes. Earth Planet Sci Lett 277:38–49

    Article  Google Scholar 

  • Kono Y, Ishikawa M, Harigane Y, Michibayashi K, Arima M (2009) P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: implications for seismic Moho discontinuity attributed to abundant garnet. Tectonophysics 467:44–54

    Article  Google Scholar 

  • Koyaguchi T, Kaneko K (1999) A two-stage thermal evolution model of magmas in continental crust. J Petrol 40:241–254

    Article  Google Scholar 

  • Kratzmann DJ, Carey S, Scasso RA, Naranjo J-A (2010) Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. Contrib Miner Petrol 159:237–264

    Article  Google Scholar 

  • Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Miner Petrol 159:475–492

    Article  Google Scholar 

  • Leaver DS, Mooney WD, Kohler WM (1984) A seismic refraction study of the Oregon Cascades. J Geophys Res 89:3121–3134

    Article  Google Scholar 

  • Lee C-TA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib Miner Petrol 151:222–242

    Article  Google Scholar 

  • Leeman WP, Smith DR, Hildreth W, Palacz Z, Rogers NW (1990) Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: implications for subduction zone magmatism. J Geophys Res 95:19561–19582

    Article  Google Scholar 

  • Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone-the southern Washington Cascades. Chem Geol 212:101–124

    Article  Google Scholar 

  • Leeman WP, Lewis JF, Evarts RC, Conrey RM, Streck MJ (2005) Petrologic constraints on the thermal structure of the Cascades arc. J Volcanol Geoth Res 140:67–105

    Article  Google Scholar 

  • Mandeville CW, Webster JD, Tappen C, Taylor BE, Timbal A, Sasaki A, Hauri E, Bacon CR (2009) Stable isotope and petrologic evidence of open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon. Geochimica et Cosmochimica Acta 73:2978–3012

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Mercer CN, Johnston AD (2008) Experimental studies of the P-T-H2O near-liquidus phase relations of basaltic andesite from North Sister Volcano, High Oregon Cascades: constraints on lower-crustal mineral assemblages. Contrib Miner Petrol 155:571–592

    Article  Google Scholar 

  • Miller T, Smith R (1987) Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska. Geology 15:434–438

    Article  Google Scholar 

  • Mitchell EC, Asmerom Y (2011) U-series isotope systematics of mafic magmas from central Oregon: implications for fluid involvement and melting processes in the Cascade arc. Earth Planet Sci Lett 312:378–389

    Article  Google Scholar 

  • Mooney WD, Weaver CS (1989) Regional crustal structure and tectonics of the Pacific coastal states; California, Oregon, and Washington. Geol Soc Am 172:129–161

    Google Scholar 

  • Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344:31–36

    Article  Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. US Geol Surv Bull 1:1108

    Google Scholar 

  • Newman S, Macdougall JD, Finkel RC (1986) Petrogenesis and 230Th–238U disequilibrium at Mt. Shasta, California, and in the Cascades. Contrib Miner Petrol 93:195–206

    Article  Google Scholar 

  • Ottonello G, Ernst WG, Joron JL (1984) Rare earth and 3D transition element geochemistry of peridotitic rocks: I. Peridotites from the Western Alps. J Petrol 25:343–372

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2004) Cosmochemical estimates of mantle composition. Elsevier, Oxford

    Google Scholar 

  • Petford N, Gallagher K (2001) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–499

    Article  Google Scholar 

  • Priest GR (1990) Volcanic and tectonic evolution of the Cascade volcanic arc, Central Oregon. J Geophys Res 95:19583–19599

    Article  Google Scholar 

  • Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol 44:2203–2241

    Article  Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709

    Article  Google Scholar 

  • Qian Q, Hermann J (2013) Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165:1195–1224

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Reagan MK, Sims KWW, Erich J, Thomas RB, Cheng H, Edwards RL, Layne G, Ball L (2003) Time-scales of differentiation from mafic parents to rhyolite in North American Continental arcs. J Petrol 44:1703–1726

    Article  Google Scholar 

  • Reiners P, Hammond P, McKenna J, Duncan R (2000) Young basalts of the central Washington Cascades, flux melting of the mantle and trace element signatures of primary arc magmas. Contrib Miner Petrol 138:249–264

    Article  Google Scholar 

  • Reubi O, Bourdon B, Dungan MA, Koornneef JM, Sellés D, Langmuir CH, Aciego S (2011) Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile. Earth Planet Sci Lett 303:37–47

    Article  Google Scholar 

  • Rowe MC, Kent AJR, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascades volcanic arc. J Petrol 50:61–91

    Article  Google Scholar 

  • Rudnick RL, Gao S (2004) Composition of the continental crust. Elsevier, Oxford

    Google Scholar 

  • Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298:153–161

    Article  Google Scholar 

  • Ruscitto DM, Wallace PJ, Cooper LB, Plank T (2012) Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem Geophys Geosyst 13:Q03025

    Article  Google Scholar 

  • Scheibner B, Heumann A, Wörner G, Civetta L (2008) Crustal residence times of explosive phonolite magmas: U–Th ages of magmatic Ca-Garnets of Mt. Somma-Vesuvius (Italy). Earth Planet Sci Lett 276:293–301

    Article  Google Scholar 

  • Schmidt ME, Grunder AL, Rowe MC (2008) Segmentation of the Cascade Arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts. Earth Planet Sci Lett 266:166–181

    Article  Google Scholar 

  • Schmidt ME, Grunder AL, Rowe MC, Chesley JT (2013) Re and Os isotopes of the central Oregon Cascades and along the arc indicate variable homogenization and mafic growth in the deep crust. Geochim Cosmochim Acta 109:345–364

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Miner Petrol 117:394–409

    Article  Google Scholar 

  • Sherrod DR, Smith JG (1990) Quaternary extrusion rates of the Cascade Range, Northwestern United States and Southern British Columbia. J Geophys Res 95:19465–19474

    Article  Google Scholar 

  • Sims KWW, Gill J, Dosseto A, Hoffman DL, Lundstrom CC, Williams RW, Ball L, Tollstrup D, Turner S, Prytulak J, Glessner JJG, Standish JJ, Elliott T (2008) An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. Geostand Geoanal Res 32:65–91

    Article  Google Scholar 

  • Singer BS, Smith KE, Jicha BR, Beard BL, Johnson CM, Rogers NW (2011) Tracking open-system differentiation during growth of Santa María Volcano, Guatemala. J Petrol 52:2335–2363

    Article  Google Scholar 

  • Sisson TW, Layne G (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635

    Article  Google Scholar 

  • Smith DR, Leeman WP (2005) Chromian spinel-olivine phase chemistry and the origin of primitive basalts of the southern Washington Cascades. J Volcanol Geoth Res 140:49–66

    Article  Google Scholar 

  • Stanley WD, Mooney WD, Fuis GS (1990) Deep crustal structure of the Cascade Range and surrounding regions from seismic refraction and magnetotelluric data. J Geophys Res 95:19419–19438

    Article  Google Scholar 

  • Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354

    Article  Google Scholar 

  • Sturchio NC, Muehlenbachs K, Seitz MG (1986) Element redistribution during hydrothermal alteration of rhyolite in an active geothermal system: yellowstone drill cores Y-7 and Y-8. Geochim Cosmochim Acta 50:1619–1631

    Article  Google Scholar 

  • Sturchio NC, Binz CM, Lewis CH III (1987) Thorium-uranium disequilibrium in a geothermal discharge zone at Yellowstone. Geochim Cosmochim Acta 51:2025–2034

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geol. Soc. London Spec. Publ., pp 313–345

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90

    Article  Google Scholar 

  • Tepley FJ III, Lundstrom CC, Gill JB, Williams RW (2006) U–Th–Ra disequilibria and the time scale of fluid transfer and andesite differentiation at Arenal volano, Costa Rica (1968–2003). J Volcanol Geoth Res 157:147–165

    Article  Google Scholar 

  • Tiepelo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Van Calsteren PW, Heath E, Macdonald R, Black S (1996) U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet Sci Lett 142:191–207

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U–230Th disequilibria, magma petrogenesis, and flux rates beneath the depeted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61:4855–4884

    Article  Google Scholar 

  • Turner S, McDermott F, Hawkesworth C, Kepezhinskas P (1998) A U-series study of lavas from Kamchatka and the Aleutians: constraints on source composition and melting processes. Contrib Miner Petrol 133:217–234

    Article  Google Scholar 

  • Turner S, Bourdon B, Gill J (2003) Insights into magma genesis at convergent margins from U-series isotopes. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry, vol 52. Reviews in Mineralogy and Geochemistry, pp 255–315

  • Turner S, Sandiford M, Reagan MK, Hawkesworth C, Hildreth W (2010) Origins of large-volume, compositionally zoned volcanic eruptions: New constraints from U-series isotopes and numerical thermal modeling for the 1912 Katmai-Novarupta eruption. Journal of Geophysical Research 115(B12201):1–22

    Google Scholar 

  • Van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1056

    Google Scholar 

  • Villemant B, Boudon G, Komorowski J-C (1996) U-series disequilibrium in arc magmas induced by water-magma interaction. Earth Planet Sci Lett 140:259–267

    Article  Google Scholar 

  • Volpe AM (1992) 238U–230Th–226Ra disequilibrium in young Mt. Shasta andesites and dacites. J Volcanol Geoth Res 53:227–238

    Article  Google Scholar 

  • Volpe AM, Hammond PE (1991) 238U–230Th–226Ra disequilibria in young Mount St. Helens rocks: time constraint for magma formation and crystallization. Earth Planet Sci Lett 107:475–486

    Article  Google Scholar 

  • Wilson DS (1988) Tectonic history of the Juan de Fuca Ridge over the last 40 million years. J Geophys Res 93:11863–11876

    Article  Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geoth Res 68:1–28

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1993) Garnet growth during amphibolite anatexis: implications of a garnetiferous restite. J Geol 101:357–373

    Article  Google Scholar 

  • Wollenberg HA, Flexser S, Smith AR (1995) Mobility and depositional controls of radioelements in hydrothermal systems at the Long Valley and Valles calderas. J Volcanol Geoth Res 67:171–186

    Article  Google Scholar 

  • Wood BJ, Blundy JD, Robinson JAC (1999) The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim Cosmochim Acta 63:1613–1620

    Article  Google Scholar 

  • Yang Y, Ritzwoller MH, Lin F, Moschetti M, Shapiro NM (2008) Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J Geophys Res 113:B12310

    Article  Google Scholar 

  • Zellmer GF (2009) Petrogenesis of Sr-rich adakitic rocks at volcanic arcs: insights from global variations of eruptive style with plate convergence rates and surface heat flux. J Geol Soc 166:725–734

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Kate Smith for her assistance in the field and for her help with obtaining the Th isotope analyses. We also thank Heather Wright for help with fieldwork and discussions related to this project. Comments on a draft manuscript by Steve Shirey and Naomi Matthews, and Contributions to Mineralogy and Petrology reviews by Georg Zellmer and an anonymous reviewer, as well as additional comments by Jon Blundy, helped us to improve the quality and clarity of this manuscript. This work was supported by National Science Foundation Grant No. 1144937, as well as the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0718123, the Jack Kleinman Grants for Volcano Research program, and a Weeks Research Assistantship and alumni gift funds from the University of Wisconsin-Madison Department of Geoscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meagan E. Ankney.

Additional information

Communicated by M.W. Schmid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 1663 kb)

Supplementary material 2 (XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankney, M.E., Johnson, C.M., Bacon, C.R. et al. Distinguishing lower and upper crustal processes in magmas erupted during the buildup to the 7.7 ka climactic eruption of Mount Mazama, Crater Lake, Oregon, using 238U–230Th disequilibria. Contrib Mineral Petrol 166, 563–585 (2013). https://doi.org/10.1007/s00410-013-0891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0891-4

Keywords

Navigation