Skip to main content

Advertisement

Log in

The extent of U-series disequilibria produced during partial melting of the lower crust with implications for the formation of the Mount St. Helens dacites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The extent to which U-series disequilibria can be produced during partial melting of mafic lower crust is quantified using a simple batch melting model and both experimental and theoretical partition coefficients for U, Th and Ra. We show that partial melting of mafic lower crust can only produce small disequilibria between 238U, 230Th and 226Ra. Crystallisation of basalt and mixing between young basalt and crustal derived melts will have a similar or smaller effect. Consequently, U-series disequilibrium in arc andesites and dacites can generally only be an inherited feature derived from a mantle parent, unless the timescales of silicic magma production within the crust are short compared to the half-life of 226Ra. Our results have profound implications for several recent models of silicic magma production by thermal incubation and partial melting of the lower crust. We show that the 226Ra excess observed in most arc andesites and dacites requires extremely rapid differentiation and/or the involvement of mantle derived basalts less than a few thousand years old. Application to Mount St. Helens suggests that crystallisation of young mantle-derived magma is likely to be the dominant process in the formation of these dacites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–c

Similar content being viewed by others

References

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955. DOI: 10.1016/S0012-821X(02)00929-9

    Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite and monazite in orthogneisses from southwestern Norway. Geochim Cosmochim Acta 60:1341–1354. DOI: 10.1016/0016-7037(96)00006-3

    Google Scholar 

  • Blundy J, Brooker R (2004) Trace element partitioning during partial melting and crystallisation of hydrous basalt in the lower crust.

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454. DOI: 10.1038/372452a0

    Google Scholar 

  • Blundy J, Wood B (2003) Mineral-melt partitioning of uranium, thorium and their daughters. In: Bourdon B, Henderson G, Lundstrom C, Turner S (eds) Uranium series geochemistry. Rev Miner Geochem 52:59–123

    CAS  Google Scholar 

  • Bourdon B, Sims KWW (2003) U-series constraints on intraplate basaltic magmatism. In: Bourdon B, Henderson G, Lundstrom C, Turner S (eds) Uranium series geochemistry. Rev Miner Geochem 52:255–313

    CAS  Google Scholar 

  • Bourdon B, Worner G, Zindler A (2000) U-series evidence for crustal involvement and magma residence times in the petrogenesis of Parinacota volcano, Chile. Contrib Miner Petrol 139:458–469. DOI: 10.1007/s004100000150

    Google Scholar 

  • Condomines M (1997) Dating recent volcanic rocks through 230Th–238U disequilibrium in accessory minerals: example of the Puy de Dome (French Massif Central). Geology 25(4):375–378. DOI: 10.1130/0091-7613(1997)025<0375:DRVRTT>2.3.CO;2

    Google Scholar 

  • Conrey RM, Hooper PR, Larson PB, Chesley J, Ruiz J (2001) Trace element and isotopic evidence for two types of crustal melting beneath a High Cascade volcanic center, Mt. Jefferson, Oregon. Contrib Miner Petrol 141:710–732. DOI: 10.1007/s004100100259

    Google Scholar 

  • Cooper KM, Reid MR (2003) Re-examination of crystal ages in recent Mount St. Helens lavas: implications for magma reservoir processes. Earth Planet Sci Lett 213:149–167. DOI: 10.1016/S0012-821X(03)00262-0

    Google Scholar 

  • Davidson JP (1985) Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci Lett 72:163–174. DOI: 10.1016/0012-821X(85)90003-2

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallisation and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533. DOI: 10.1007/s00410-003-0448-z

    Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306. DOI: 10.1016/S0009-2541(02)00222-X

    Google Scholar 

  • Heumann A, Davies GR, Elliott T (2002) Crystallization history of rhyolites at Long Valley, California, inferred from combined U-series and Rb–Sr isotope systematics. Geochim Cosmochim Acta 66(10):1821–1837. DOI: 10.1016/S0016-7037(01)00883-3

    Google Scholar 

  • Hughes RD, Hawkesworth CJ (1999) The effects of magma replenishment processes on 238U–230Th disequilibrium. Geochim Cosmochim Acta 63(23/24):4101–4110. DOI:10.1016/S0016-7037(99)00311-7

    Google Scholar 

  • Huppert HE, Sparks RS (1988) The generation of granitic magmas by intrusion of basalt into the continental crust. J Petrol 29(3):599–624

    CAS  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Miner 88:639–646

    CAS  Google Scholar 

  • Laube N, Springer J (1998) Crustal melting by ponding of mafic magmas: a numerical model. J Volcanol Geotherm Res 81:19–35. DOI: 10.1016/S0377-0273(97)00072-3

    Google Scholar 

  • Leeman WP, Smith DR, Hildreth W, Palacz Z, Rogers N (1990) Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: implications for subduction zone magmatism. J Geophys Res 95:19561–19582

    Google Scholar 

  • Müntener O, Keleman PB, Grove TL (2001) The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141:643–658. DOI: 10.1007/s004100100266

    Google Scholar 

  • Orozco-Esquivel MT, Nieto-Samaniego AF, Alaniz-Alvarez SA (2002) Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. J Volcanol Geotherm Res 118:37–56. DOI: 10.1016/S0377-0273(02)00249-4

    Google Scholar 

  • Pearce TH, Russell JK, Wolfson I (1987) Laser-interference and Nomarski interference imaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980, eruption of Mount St. Helens, Washington. Am Miner 72:1131–1143

    CAS  Google Scholar 

  • Petford N, Gallagher K (2001) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–499. DOI: 10.1016/S0012-821X(01)00481-2

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implication for continental growth and crust-mantle recycling. J Petrol 36:891–931

    CAS  Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid absent conditions. Contrib Miner Petrol 107:41–59

    CAS  Google Scholar 

  • Smith DR, Leeman WP (1987) Petrogenesis of Mount St. Helens dacitic magmas. J Geophys Res B Solid Earth Planets 92:10313–10334

    Google Scholar 

  • Smith DR, Leeman WP (1993) The origin of Mount St. Helens adesites. J Volcanol Geotherm Res 55:271–303

    Article  CAS  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119. DOI: 10.1016/S0009-2541(02)00151-1

    Google Scholar 

  • Turner S, Evans P, Hawkesworth C (2001) Ultrafast source to surface movement of melt at island arcs from 226Ra–230Th systematics. Science 292:1363–1366. DOI: 10.1126/science.1059904

    Google Scholar 

  • Turner S, Bourdon B, Gill J (2003) Insights into magma genesis at convergent margins from U-series isotopes. In: Bourdon B, Henderson G, Lundstrom C, Turner S (eds) Uranium series geochemistry. Rev Miner Geochem 52:255–313

    CAS  Google Scholar 

  • Vigier N, Bourdon B, Joron JL, Allègre CJ (1999) U-decay series and trace-element systematics in the 1978 erupion of Ardoukoba, Asal rift: timescale of magma crystallization. Earth Planet Sci Lett 174:81–97. DOI: 10.1016/S0012-821X(99)00256-3

    Google Scholar 

  • Vigneresse JL, Tikoff B (1999) Strain partitioning during partial melting and crystallizing felsic magmas. Tectonophysics 312:117–132. DOI: 10.1016/S0040-1951(99)00167-5

    Google Scholar 

  • Volpe AM, Hammond PE (1991) 238U–230Th–226 Ra disequilibria in young Mount St. Helens rocks: time constraints for magma formation and crystallisation. Earth Planet Sci Lett 107:475–486. DOI: 10.1016/0012-821X(91)90094-X

    Google Scholar 

  • Watson EB, Harrison TM (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Phys Earth planetary interiors 35:19–30

    Article  CAS  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Miner Petrol 115:369–383

    CAS  Google Scholar 

  • Zellmer G, Turner S, Hawkesworth C (2000) Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth Planet Sci Lett 174:265–281. DOI: 10.1016/S0012-821X(99)00266-6

    Google Scholar 

Download references

Acknowledgements

During this research K. Berlo was supported by a University of Bristol scholarship. S. Turner and J. Blundy acknowledge support from the Royal Society. Reviews by Arnd Heumann and Bernard Bourdon have improved the clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlo, K., Turner, S., Blundy, J. et al. The extent of U-series disequilibria produced during partial melting of the lower crust with implications for the formation of the Mount St. Helens dacites. Contrib Mineral Petrol 148, 122–130 (2004). https://doi.org/10.1007/s00410-004-0590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0590-2

Keywords

Navigation