Skip to main content
Log in

The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The lower crust of the Mesozoic Sierra Nevada batholith was made up of high MgO, garnet-poor and low MgO, garnet-rich pyroxenites. Both groups are genetically linked and are collectively complementary to the mafic to intermediate Sierran plutons. High MgO pyroxenites represent high pressure cumulates from a mantle-derived hydrous basalt or basaltic andesite, resulting in derivative magmas having unusually low MgO for a given SiO2 as represented by the numerous mafic enclaves found in many Sierran plutons. The low MgO pyroxenites are either (1) shallow pressure cumulates from these derivative magmas or (2) partial melting residues (restites) of these derivative magmas after they were emplaced and solidified at lower crustal levels. In both cases, the complementary melt to the low MgO pyroxenites is driven to higher SiO2 contents, generating diorites and granodiorites. However, this simple two-stage scenario for the origin of Sierran granitoids cannot explain the observation that the Mg# of Sierran intermediate magmas remains roughly constant at ∼0.45–0.50 with increasing SiO2. Basaltic recharge/mixing with the lower crust is suggested as one means of buffering Mg#s and re-melting the lower crust to generate granitic melts, the latter of which mix with more juvenile magmas to complete the Sierran differentiation series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ague JJ, Brimhall GH (1988) Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California. Geol Soc Am Bull 100:891–911

    Article  Google Scholar 

  • Arndt NT, Goldstein SL (1989) An open boundary between lower continental-crust and mantle-its role in crustal formation and recycling. Tectonophysics 161:201–212

    Article  Google Scholar 

  • Baker MB, Grove M, Price R (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Mineral Petrol 118:111–129

    Article  Google Scholar 

  • Barbarin B, Dodge FCW, Kistler RW, Bateman PC (1989) Mafic inclusions, aggregates and dikes in granitoid rocks, central Sierra Nevada batholith, California – Analytic data. U.S. Geological Survey Bulletin 1899:28

    Google Scholar 

  • Bateman PC (1989) Bass Lake quadrangle, west-central Sierra Nevada, California - Analytic data. In U.S. Geological Survey Bulletin, vol. B 1809, pp 20

  • Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidfiication of the Tuolumne intrusive series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482

    Article  Google Scholar 

  • Bateman PC, Clark LD, Huber NK, Moore JG, Rinehart CD (1963) The Sierra Nevada batholith: a synthesis of recent work across the central part. In U.S. Geological Survey Professional Paper, vol. 414D, pp 46

  • Bateman PC, Chappell BW, Kistler RW, Peck DL, Busacca A (1988) Tuolumne Meadows quadrangle, California - analytic data. In U.S. Geological Survey Bulletin, vol. B-1819, pp 33

  • Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571

    Google Scholar 

  • Boyd OS, Jones CH, Sheehan AF (2004) Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science 305:660–662

    Article  PubMed  Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Coleman DR, Glazner AF (1997) The Sierra crest magmatic event: rapid formation of juvenile crust during the Late Cretaceous in California. Int Geol Rev 39:768–787

    Article  Google Scholar 

  • Coleman DR, Frost TP, Glazner AF (1992) Evidence from the Lamarck Granodiorite for rapid Late Cretaceous crust formation in California. Science 258:1924–1926

    Article  Google Scholar 

  • Conrad CP, Molnar P (1997) The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys J Inter 129:95–112

    Article  Google Scholar 

  • DeBari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103:37–47

    Article  Google Scholar 

  • Dodge FCW, Lockwood JP, Calk LC (1988) Fragments of the mantle and crust beneath the Sierra Nevada batholith: xenoliths in a volcanic pipe near Big Creek, California. Geol Soc Am Bull 100:938–947

    Article  Google Scholar 

  • Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans Roy Soc Edinburgh 87:205–215

    Google Scholar 

  • Ducea M (2001) The California arc: thick granitic batholiths, eclogitic residues, lithosphere-scale thrusting, and magmatic flare-ups. Geol Soc Am Today 11:4–10

    Google Scholar 

  • Ducea MN (2002) Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. J Geophys Res 107: doi:10.1029/2001JB000643

  • Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J Geophys Res 101:8229–8244

    Article  Google Scholar 

  • Ducea MN, Saleeby JB (1998a) Crustal recycling beneath continental arcs: silica-rich glass inclusions in ultramafic xenoliths from the Sierra Nevada, California. Earth Planet Sci Lett 156:101–116

    Article  Google Scholar 

  • Ducea MN, Saleeby JB (1998b) The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib Mineral Petrol 133:169–185

    Article  Google Scholar 

  • Eggins SM, Woodhead JD, Kinsley L, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of >40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation. Chem Geol 134:311–326

    Article  Google Scholar 

  • Elkins Tanton LT, Hager BH (2000) Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalt. Geophys Res Lett 27:3937–3940

    Article  Google Scholar 

  • Ellis DJ, Green EH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 66:13–22

    Article  Google Scholar 

  • Farmer GL, Glazner AF, Manley CR (2002) Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California Geol Soc Am Bull 114:754–768

    Article  Google Scholar 

  • Fleidner MM, Klemperer SL, Christensen NI (2000) Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. J Geophys Res 105:10899–10921

    Article  Google Scholar 

  • Fliedner MM, Klemperer SL (1999) Structure of an island-arc: wide-angle seismic studies in the eastern Aleutian Islands, Alaska. J Geophys Res 104:10667–10694

    Article  Google Scholar 

  • Foley SF, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  PubMed  Google Scholar 

  • Grove TL, Kinzler RJ (1986) Petrogenesis of andesites. Ann Rev Earth Planet Sci 14:417–454

    Article  Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California Contrib Mineral Petrol 127:205–223

    Article  Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Article  Google Scholar 

  • Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300:697–701

    Article  Google Scholar 

  • Hirschmann MM, Stolper E (1996) A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB. Contrib Mineral Petrol 124:185–208

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Holden P, Halliday AN, Stephens WE (1987) Neodymium an dstrontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330:53–56

    Article  Google Scholar 

  • Johnston AD, Wyllie PJ (1989) The system tonalite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol (102)

  • Jones CH, Kanamori H, Roecker SW (1994) Missing roots and mantle "drips": Regional Pn and telseismic arrival times in the southern Sierra Nevada and vicinity, California J Geophys Res 99:4567–4601

    Article  Google Scholar 

  • Jull M, Kelemen P (2001) On the conditions for lower crustal convective instability. J Geophys Res 106:6423–6446

    Article  Google Scholar 

  • Kay RW, Kay SM (1988) Crustal recycling and the Aleutian arc. Geochim Cosmochim Acta 52:1351–1359

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Article  Google Scholar 

  • Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:593–659

    Google Scholar 

  • Kepezhinskas PK, Defant MJ, Drummond MS (1995) Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka Arc. J Petrol 36:1505–1527

    Google Scholar 

  • Keshav S, Gudfinnsson GH, Sen G, Fei Y (2004) High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett 223:365–379

    Article  Google Scholar 

  • Kinzler RJ, Donnelly-Nolan JM, Grove TL (2000) Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas. Contrib Mineral Petrol 138:1–16

    Article  Google Scholar 

  • Kistler RW (1990) Two different lithosphere types in the Sierra Nevada, California. In: Anderson JL(ed), The nature and origin of Cordilleran magmatism, vol 174. Geol Soc Am Mem, Geological Society of America, pp. 271–281.

  • Kistler RW, Peterman ZE (1973) Variations in Sr, Rb, K, Na, and initial Sr87/Sr86 in Mesozoic granitic rocks and intruded wall rocks in central California. Geol Soc Am Bull 84:3489–3512

    Article  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K, Günther D (2005) Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta 69:2361–2371

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216:603–617

    Article  Google Scholar 

  • Lee C-T, Rudnick RL, Brimhall GH (2001) Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology. Geochem. Geophys. Geosys. 2: 2001GC000152

  • Lee C-T, Yin Q-Z, Rudnick RL, Chesley JT, Jacobsen SB (2000) Osmium isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science 289:1912–1916

    Article  PubMed  Google Scholar 

  • Lee C-TA (2002) Platinum-group element geochemistry of peridotite xenoliths from the Sierra Nevada and the Basin and Range, California. Geochim Cosmochim Acta 66:3987–4005

    Article  Google Scholar 

  • Lee C-TA (2003) Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res 108:2441, doi:10.1029/2003JB002413

    Google Scholar 

  • Lee C-TA (2005) Trace element evidence for hydrous metasomatism at the base of the North American lithosphere and possible association with Laramide low-angle subduction. J Geol 113:673–685

    Article  Google Scholar 

  • Leeman WP, Lewis JF, Evarts RC, Conrey RM, Streck MJ (2005) Petrologic constraints on the thermal structure of the southern Washington Cascades. J Volcanol Geotherm Res 140:67–105

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1: 1999GC000026

  • Liu Y, Shan G, Lee C-TA, Hu S, Liu X, Yuan H (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57

    Article  Google Scholar 

  • Manley CR, Glazner AF, Farmer GL (2000) Timing of volcanism in the Sierra Nevada of California; evidence for Pliocene delamination of the batholithic root? Geology 28:811–814

    Article  Google Scholar 

  • Miller DJ, Christensen NI (1993) Seismic signature and geochemistry of an island arc: a multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J Geophys Res 99:11623–11642

    Article  Google Scholar 

  • Moore JG (1987) Mount Whitney quadrangle, Inyo and Tulare counties, California - analytic data. U.S. Geological Survey Bulletin 1760

  • Morency C, Doin M-P (2004) Numerical simulations of the mantle lithosphere delamination. J Geophys Res 109: doi:10.1029/2003JB002414

  • Mukhopadhyay B, Manton WI (1994) Upper mantle fragments from beneath the Sierra Nevada batholith-partial fusion, fractional crystallization and metasomatism in subduction-related ancient lithosphere. J Petrol 35:1418–1450

    Google Scholar 

  • Münker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka - Aleutian arc lavas. Earth Planet Sci Lett 224:275–293

    Article  Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 2000:541–554

    Article  Google Scholar 

  • Pearcy LG, DeBari SM, Sleep NH (1990) Mass balance calculations for two sections of island arc crust and implications for the formation of continents. Earth Planet Sci Lett 96:427–442

    Article  Google Scholar 

  • Peck DL, Van Kooten GK (1983) Merced Peak Quadrangle, central Sierra Nevada, California - Analytic data. In U. S. Geological Survey Professional Paper, vol. 1170-D, pp 29

  • Pertermann M, Hirschmann MM (2003a) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003b) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenites in basalt source regions. J Geophys Res 108: 10.1029/2000JB000118, 1–17

    Google Scholar 

  • Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425:605–609

    Article  PubMed  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Ratajeski K, Glazner AF, Miller BV (2001) Geology and geochemistry of mafic to felsic plutonic rocks in the Cretaceous intrusive suite of Yosemite Valley, California. Geol Soc Am Bull 113:1486–1502

    Article  Google Scholar 

  • Ratajeski K, Sisson TW, Glazner AF (2005) Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust. Contrib Mineral Petrol 149:713–734

    Article  Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Seber D, Barazangi M, Ibenbrahim A, Demnati A (1996) Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature 379:785–790

    Article  Google Scholar 

  • Sekine T, Wyllie PJ (1982) The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol 81:190–202

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409

    Article  Google Scholar 

  • Sisson TW (1992) Triple Divide Peak quadrangle, Fresno and Tulare counties, California - analytic data. U.S. Geological Survey Bulletin 2026

  • Sisson TW, Grove TL, Coleman RG (1996) Hornblende gabbro sill complex at Onion valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  PubMed  Google Scholar 

  • Tatsumi Y (2000) Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochem Geophys Geosys 1: 2000GC000094

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Wenner JM, Coleman DS (2004) Magma mixing and Cretaceous crustal growth: geology and geochemistry of granites in the central Sierra Nevada batholith, California. Inter Geol Rev 46:880–903

    Article  Google Scholar 

  • Wernicke B, Clayton R, Ducea M, Jones CH, Park S, Ruppert S, Saleeby J, Snow JK, Squires L, Fliedner M, Jiracek G, Keller R, Klemperer S, Luetgert J, Malin P, Miller K, Mooney W, Oliver H, Phinney R (1996) Origin of high mountains in the continents: the southern Sierra Nevada. Science 271:190–193

    Article  Google Scholar 

  • Zandt G, Carrigan CR (1993) Small-scale convective instability and upper mantle viscosity under California. Science 261:460–463

    Article  Google Scholar 

  • Zandt G, Gilbert H, Owens TJ, Ducea M, Saleeby J, Jones CH (2004) Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431:41–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The following people are thanked for discussions and/or inspiration relating to the Sierra Nevada, “eclogites”, and continental crust over the years: W. P. Leeman, Z.-X. A. Li, R. Rudnick, M. Barth, G. J. Wasserburg, P. Kelemen, E. Humphreys, G. Brimhall, M. Ducea, J. Saleeby, A. Glazner, and G. L. Farmer. Critical reviews by M. Ducea and K. Ratajeski are greatly appreciated and helped to improve the mansucript. Comments made by M. Hirschmann and T. Grove also helped the manuscript. A. Peslier is thanked for help on electron microprobe analyses. This research was supported in part by NSF grants EAR 0440033 and 0309121. Undergraduate support for U. Horodyskyj came from NSF and Rice University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cin-Ty Aeolus Lee.

Additional information

Communicated by T. L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CT.A., Cheng, X. & Horodyskyj, U. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib Mineral Petrol 151, 222–242 (2006). https://doi.org/10.1007/s00410-005-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0056-1

Keywords

Navigation