Skip to main content
Log in

A novel hydrogelator based on dimeric-dehydrocholic acid derivative

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A dimeric-dehydrocholic acid derivative (DDAD) was synthesized and studied for its gelation ability in the potassium hydroxide solution. The DDAD-based gels were further investigated for their thermal stabilities and morphological structures by using the vial inversion method, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Interestingly, the TEM and AFM images of the DDAD-based gels indicated that the supramolecular structures were composed of longer fibers. Importantly, Fourier transformation infrared spectra further revealed that the main driving forces in gel formation involve multiple hydrogen bonding, electrostatic, and dipole–dipole interactions among the gelator molecules. The X-ray diffraction analysis showed that the molecular packings in both the DDAD powders and the organogel phase were highly disordered. Based on these results, a mechanism for the formation of hydrogels is proposed. These findings present a novel hydrogelator and an insight into developing new types of gels as potential soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  2. Donato RK, Migliorini MV, Benvegnú MA, Stracke MP, Gelesky MA, Pavan FA, Schrekker CML, Benvenutti EV Dupont J, Schrekker HS (2009) Synthesis of silica xerogels with highly distinct morphologies in the presence of imidazolium ionic liquids. J Sol-Gel Sci Technol 49:71–77

    Article  CAS  Google Scholar 

  3. Chen XL, Liu LL, Liu KQ, Miao Q, Lü YC, Fang Y (2015) Compressible porous hybrid monoliths: preparation via a low molecular mass gelators-based gel-emulsion approach and exceptional performances. J Mater Chem A 3:24322–24332

    Article  CAS  Google Scholar 

  4. Thubsuang U, Ishida H, Wongkasemjit S, Chaisuwan T (2014) Self-formation of 3D interconnected macroporous carbon xerogels derived from polybenzoxazine by selective solvent during the sol-gel process. J Mater Sci 49:4946–4961

    Article  CAS  Google Scholar 

  5. Kirk W, Wessels W (2014) Electrophoretic mobility of weakly-charged (dipolar) hydrogels in water: contribution of hydrogen-bonding in the solvent dipole layer. J Colloid Interface Sci 416:294–305

    Article  CAS  Google Scholar 

  6. Gao CG, Xue L, Chen YH, Li XY (2015) Supramolecular organogels based on perylenetetracarboxylic diimide trimers linked with benzenetricarboxylate. Colloid Polym Sci 293:35–48

    Article  CAS  Google Scholar 

  7. Yang HK, Wang XX, Xiao H, Ma ZN (2016) Steroid-based A(LS)3-type gelators: probing the design criteria in creating soft materials. J Mater Sci 51:8529–8542

    Article  CAS  Google Scholar 

  8. Yadav P, Ballabh A (2012) Synthesis, characterization and nano-particles synthesis using a simple two component supramolecular gelator: a step towards plausible mechanism of hydrogelation. Colloids Surf A: Physicochem Eng Aspects 414:333–338

    Article  CAS  Google Scholar 

  9. Salazar-Bautista SC, Chebil A, Pickaert G, Gaucher C, Jamart-Gregoire B, Durand A, Leonard M (2017) Encapsulation and release of hydrophobic molecules from particles of gelled triglyceride with aminoacid-based low-molecular weight gelators. Colloids Surf A: Physicochem Eng Aspects 514:11–20

    Article  CAS  Google Scholar 

  10. Geever LM, Higginbotham CL (2011) Temperature-triggered gelation and controlled drug release via NIPAAm/NVP-based hydrogels. J Mater Sci 46:3233–3240

    Article  CAS  Google Scholar 

  11. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  12. Chwalek K, Tsurkan MV, Freudenberg U, Werner C (2014) Glycosaminoglycan-based hydrogels to modulate heterocellular communication in vitro angiogenesis models. Sci Rep 4:4414

    Article  Google Scholar 

  13. Park KM, Gerecht S (2014) Hypoxia-inducible hydrogels. Nat Commun 5:4075

    CAS  Google Scholar 

  14. Yang ZM, Xu B (2007) Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem 17:2385–2393

    Article  CAS  Google Scholar 

  15. Döring A, Birnbaum W, Kuckling D (2013) Responsive hydrogels-structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 42:7391–7420

    Article  Google Scholar 

  16. Cao XH, Zhao N, Lv HT, Ding QQ, Gao AP, Jing QS, Yi T (2017) Strong blue emissive supramolecular self-assembly system based on naphthalimide derivatives and its ability of detection and removal of 2,4,6-trinitrophenol. Langmuir 33:7788–7798

    Article  CAS  Google Scholar 

  17. Cao XH, Zhao N, Zou GD, Gao AP, Ding QQ, Zeng GJ, Wu YQ (2017) A dual response organogel system based on an iridium complex and a Eu(III) hybrid for volatile acid and organic amine vapors. Soft Matter 13:3802–3811

    Article  CAS  Google Scholar 

  18. Cao XH, Zhao N, Li RH, Lv HT, Zhang ZW, Gao AP, Yi T (2016) Steric-structure-dependent gel formation, hierarchical structures, rheological behavior, and surface wettability. Chem Asian J 11:3196–3204

    Article  CAS  Google Scholar 

  19. Cao XH, Lan HC, Li ZH, Mao YY, Chen LM, Wu YQ, Yi T (2015) White light emission from a two-component hybrid gel via an energy transfer process. Phys Chem Chem Phys 17:32297–32303

    Article  CAS  Google Scholar 

  20. Ren Y, Li CX, Lu Y, Wang XD, Zeng XS (2010) Aggregates of cholic acid and benzylamine as templates for the formation of hollow silica spheres. J Mater Sci 45:6830–6833

    Article  CAS  Google Scholar 

  21. Xing PY, Chu XX, Du GY, Ma MF, Li SY, Hao AY (2014) Utilizing dual responsive supramolecular gel to stabilize grapheme oxide in apolar solvents. Colloid Polym Sci 292:3223–3231

    Article  CAS  Google Scholar 

  22. Wang JY, Han YC (2011) Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. J Colloid Interface Sci 353:498–505

    Article  CAS  Google Scholar 

  23. Khimani M, Verma G, Kumar S, Hassan PA, Aswal VK, Bahadur P (2015) pH induced tuning of size, charge and viscoelastic behavior of aqueous micellar solution of Pluronic® P104–anthranilic acid mixtures: a scattering, rheology and NMR study. Colloids Surf A: Physicochem Eng Aspects 470:202–210

    Article  CAS  Google Scholar 

  24. Ran X, Wang HT, Zhang P, Bai BL, Zhao CX, Yu ZX, Li M (2011) Photo-induced fiber-vesicle morphological change in an organogel based on an azophenyl hydrazide derivative. Soft Matter 7:8561–8566

    Article  CAS  Google Scholar 

  25. Hao X, Liu H, Xie YJ, Fang C, Yang HY (2013) Thermal-responsive self-healing hydrogel based on hydrophobically modified chitosan and vesicle. Colloid Polym Sci 291:1749–1758

    Article  CAS  Google Scholar 

  26. Yang HK, Zhao H, Yang PR, Huang CH (2017) How do molecular structures affect gelation properties of supramolecular gels? Insights from low-molecular-weight gelators with different aromatic cores and alkyl chain lengths. Colloids Surf A: Physicochem Eng Aspects 535:242–250

    Article  CAS  Google Scholar 

  27. Wei HL, Yao K, Chu HJ, Li ZC, Zhu J, Shen YM, Zhao ZX, Feng YL (2012) Click synthesis of the thermo- and pH-sensitive hydrogels containing β-cyclodextrins. J Mater Sci 47:332–340

    Article  CAS  Google Scholar 

  28. Yu Y, Wang S, Jia L, Zhou MM, Pan QD, Zhai YC, Wang CS (2016) Organogels from different self-assembling novel L-proline dihydrazide derivatives: gelation mechanism and morphology investigations. J Sol-Gel Sci Technol 78:218–227

    Article  CAS  Google Scholar 

  29. Yao CH, Sun Q, Xia W, Zhang J, Lin C, Wang LY (2017) Ferrocenyl-guest tunable organogel constructed from a pillar[6]arenefunctionalized cholesterol derivative. J Organomet Chem 847:68–73

    Article  CAS  Google Scholar 

  30. Travaglini L, D'Annibale A, Schillén K, Olsson U, Sennato S, Pavela NV, Galantini L (2012) Amino acid-bile acid based molecules: extremely narrow surfactant nanotubes formed by a phenylalanine-substituted cholic acid. Chem Commun 48:12011–12013

    Article  CAS  Google Scholar 

  31. Jung JH, Parka M, Shinkai S (2010) Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Chem Soc Rev 39:4286–4302

    Article  CAS  Google Scholar 

  32. Löfman M, Koivukorpi J, Noponen V, Salo H, Sievänen E (2011) Bile acid alkylamide derivatives as low molecular weight organogelators: systematic gelation studies and qualitative structural analysis of the systems. J Colloid Interface Sci 360:633–644

    Article  Google Scholar 

  33. Ghosh K, Panja S, Bhattacharya S (2017) Visual sensing of Ag+ ions through gelation of cholesterol-appended benzimidazole and associated ion conducting behavior. Chemistry Select 2:959–966

    CAS  Google Scholar 

  34. Ghosh K, Kar D, Panja S, Bhattacharya S (2014) Ion conducting cholesterol appended pyridinium bisamide-based gel for the selective detection of Ag+ and Cl ions. RSC Adv 4:3798–3803

    CAS  Google Scholar 

  35. Banerjee S, Vidya VM, Savyasachi AJ, Maitra U (2011) Perfluoroalkyl bile esters: a new class of efficient gelators of organic and aqueous-organic media. J Mater Chem 21:14693–14705

    Article  CAS  Google Scholar 

  36. Nonappa MU (2007) Simple esters of cholic acid as potent organogelators: direct imaging of the collapse of SAFINs. Soft Matter 3:1428–1433

    Article  CAS  Google Scholar 

  37. Virtanen E, Kolehmainen E (2004) Use of bile acids in pharmacological and supramolecular applications. Eur J Org Chem 2004:3385–3399

    Article  Google Scholar 

  38. Cravotto G, Binello A, Boffa L, Rosati O, Boccalini M, Chimichi S (2006) Regio- and stereoselective reductions of dehydrocholic acid. Steroids 71:469–475

    Article  CAS  Google Scholar 

  39. Jeon HJ, Kang MK, Park C, Kim KT, Chang JY, Kim C, Song HH (2007) Supramolecular ordering of amide dendrons in lyotropic and thermotropic conditions. Langmuir 23:13109–13116

    Article  CAS  Google Scholar 

  40. Yang HK, Wang XX, Yan YK (2016) Two-component dendritic gel: influence of the aromatic chain length on the organogel stability and supramolecular architecture. Colloids and Surfaces A: Physicochem Eng Aspects 497:72–80

    Article  CAS  Google Scholar 

  41. Eldridge JE, Ferry JD (1954) Studies of the crosslinking process in gelatin gels. III. Dependence of melting point on concentration and molecular weight. J Phys Chem 58:992–995

    Article  CAS  Google Scholar 

  42. Tran NB, Moon JR, Jeon YS, Kim JY, Kim JH (2017) Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Colloid Polym Sci 295:655–664

    Article  CAS  Google Scholar 

  43. He PL, Liu J, Liu KQ, Ding LP, Yan JL, Gao D, Fang Y (2010) Preparation of novel organometallic derivatives of cholesterol and their gel-formation properties. Colloids and Surfaces A: Physicochem Eng Aspects 362:127–134

    Article  CAS  Google Scholar 

  44. Wu JD, Lu JR, Hu J, Gao YX, Ma Q, Ju Y (2013) Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties. RSC Adv 3:24906–24909

    Article  CAS  Google Scholar 

  45. Bag BG, Dash SS (2016) Self-assembly of sodium and potassium betulinates into hydro- and organo-gels: entrapment and removal studies of fluorophores and synthesis of gel-gold nanoparticle hybrid materials. RSC Adv 6:17290–17296

    Article  CAS  Google Scholar 

  46. Lan Y, Corradini MG, Weiss RG, Raghavanc SR, Rogers MA (2015) To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev 44:6035–6058

    Article  CAS  Google Scholar 

  47. Buerkle LE, Rowan SJ (2012) Supramolecular gels formed from multi-component low molecular weight species. Chem Soc Rev 41:6089–6102

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Science Foundation of North University of China (No. XJJ2016015), the Open Research Fund of Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University (No. 201603), the National Natural Science Foundation of China (No. 21503195), and Shanxi Provincial Foundation for Science and Technology Research (No. 201701D221090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haikuan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Qi, P. & Zhao, H. A novel hydrogelator based on dimeric-dehydrocholic acid derivative. Colloid Polym Sci 296, 1071–1078 (2018). https://doi.org/10.1007/s00396-018-4324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4324-9

Keywords

Navigation