Skip to main content
Log in

Click synthesis of the thermo- and pH-sensitive hydrogels containing β-cyclodextrins

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel intelligent hydrogels containing β-cyclodextrins were prepared by tandem physical and chemical crosslinking method based on Diels–Alder reaction. First, dienophile-functionalized cyclodextrins (HCD–AMI) were synthesized by the coupling reaction of hydroxyethyl-β-cyclodextrins and N-maleoyl alanine (AMI); diene-functionalized polymers (PFMIPA) were synthesized by free radical copolymerization of N-isopropylacrylamide and furfuryl amine maleic acid monoamide, a novel monomer synthesized in our lab. Then, the LCSTs of the PFMIPA were estimated by transmittance measurements of copolymer solutions. After the as-synthesized PFMIPA and HCD–AMI were dissolved separately in water and mixed, the hydrogels with physical crosslinks formed quickly within 10 s at 37 °C. Subsequently, chemical crosslinks came into being gradually due to Diels–Alder reaction. Therefore, there are both physical crosslinks and chemical crosslinks in as-prepared hydrogels, resulting in the improvement of the mechanical strength of the hydrogels. And the in vitro degradation behaviors of the resultant hydrogels were given a pilot study. A general gravimetric method was used to study the swelling behavior of the hydrogels. It was found that the hydrogels showed good pH/temperature-sensitivity. The strategy described here has several advantages for preparing intelligent hydrogels including tunable gelation rate, mild reaction conditions, no initiator or catalyzer, and no organic solvent. We believe that this novel, potentially biocompatible hydrogels could have biomedical applications, especially in the area of tissue engineering and drug-controlled release carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Craig DQM, Cook GD, Parr GD (1992) J Mater Sci 27:3325. doi:10.1007/BF01116032

    Article  CAS  Google Scholar 

  2. Hu J, Tao Z, Li SJ, Liu BL (2005) J Mater Sci 40:6057. doi:10.1007/s10853-005-3799-1

    Article  CAS  Google Scholar 

  3. Wang Y, Xiong H, Gao Y, Li H (2008) J Mater Sci 43:5609. doi:10.1007/s10853-008-2804-x

    Article  CAS  Google Scholar 

  4. van de Manakker F, van der Pot M, Vermonden T, van Nostrum CF, Hennink WE (2008) Macromolecules 41:1766

    Article  Google Scholar 

  5. Guo M, Jiang M, Pispas S, Yu W, Zhou C (2008) Macromolecules 41:9744

    Article  CAS  Google Scholar 

  6. Yu H, Feng Z, Zhang A, Hou D, Sun L (2006) Polymer 47:6066

    Article  CAS  Google Scholar 

  7. Liu ZT, Shen LH, Liu ZW, Lu J (2009) J Mater Sci 44:1813. doi:10.1007/s10853-008-3238-1

    Article  CAS  Google Scholar 

  8. Zhang JT, Xue YN, Gao FZ, Huang SW, Zhuo RX (2008) J Appl Polym Sci 108:3031

    Article  CAS  Google Scholar 

  9. Li J, Ni X, Leong KW (2003) J Biomed Mater Res 65A:196

    Article  CAS  Google Scholar 

  10. Liu JH, Chiu YH, Chiu TH (2009) Macromolecules 42:3715

    Article  CAS  Google Scholar 

  11. Ni X, Cheng A, Li J (2009) J Biomed Mater Res 88A:1031

    Article  CAS  Google Scholar 

  12. Wang ZM, Chen YM (2007) Macromolecules 40:3402

    Article  CAS  Google Scholar 

  13. Han J, Wang K, Yang D, Nie J (2009) Int J Biol Macromol 44:229

    Article  CAS  Google Scholar 

  14. Paulino AT, Guilherme MR, Mattoso LHC, Tambourgi EB (2010) Macromol Chem Phys 211:1196

    CAS  Google Scholar 

  15. Sahiner N, Singh M (2007) Polymer 48:2827

    Article  CAS  Google Scholar 

  16. Zhang X, Wu D, Chu CC (2004) Biomaterials 25:4719

    Article  CAS  Google Scholar 

  17. Ekici S (2011) J Mater Sci 46:2843. doi:10.1007/s10853-010-5158-0

    Article  CAS  Google Scholar 

  18. Chen JP, Cheng TH (2009) Polymer 50:107

    Article  CAS  Google Scholar 

  19. Tan H, Constance RC, Karin AP, Kacey GM (2009) Biomaterials 30:2499

    Article  CAS  Google Scholar 

  20. King VR, Alovskaya A, Wei DYT, Brown RA, Priestley JV (2010) Biomaterials 31:4447

    Article  CAS  Google Scholar 

  21. Geever LM, Higginbotham CL (2011) J Mater Sci 46:3233. doi:10.1007/s10853-010-5209-6

    Article  CAS  Google Scholar 

  22. Bi L, Cheng W, Fan H, Pei G (2010) Biomaterials 31:3201

    Article  CAS  Google Scholar 

  23. Lee F, Chung JE, Kurisawa M (2009) J Control Release 134:186

    Article  CAS  Google Scholar 

  24. Jin R, Moreira Teixeira LS, Dijkstra PJ, Blitterswijk CAv, Karperien M, Feijen J (2010) Biomaterials 31:3103

    Article  CAS  Google Scholar 

  25. Fundueanu G, Constantin M, Ascenzi P (2009) Acta Biomater 5:363

    Article  CAS  Google Scholar 

  26. Wang ZC, Xu XD, Chen CS, Wang GR, Cheng SX, Zhang XZ, Zhuo RX (2009) React Funct Polym 69:14

    Article  CAS  Google Scholar 

  27. Zhang H, Zhong H, Zhang L, Chen S, Zhao Y, Zhu Y, Wang J (2010) Carbohydr Polym 79:131

    Article  CAS  Google Scholar 

  28. Mujumdar SK, Siegel RA (2008) J Polym Sci Pol Chem 46:6630

    Article  CAS  Google Scholar 

  29. Zhang J, Chu LY, Cheng CJ, Mi DF, Zhou MY, Ju XJ (2008) Polymer 49:2595

    Article  CAS  Google Scholar 

  30. Pollock JF, Healy KE (2010) Acta Biomater 6:1307

    Article  CAS  Google Scholar 

  31. He C, Kim SW, Lee DS (2008) J Control Release 127:189

    Article  CAS  Google Scholar 

  32. Wei HL, Yang Z, Zheng LM, Shen YM (2009) Polymer 50:2836

    Article  CAS  Google Scholar 

  33. Wei HL, Yang Z, Chu HJ, Zhu J, Li ZC, Cui JS (2010) Polymer 51:1694

    Article  CAS  Google Scholar 

  34. Wei HL, Yao K, Yang Z, Chu HJ, Zhu J, Ma CC, Zhao ZX (2011) Macromol Res 19(3):294

    Article  CAS  Google Scholar 

  35. Wei HL, Yang J, Chu HJ, Yang Z, Ma CC, Yao K (2011) J Appl Polym Sci 120:974

    Article  CAS  Google Scholar 

  36. Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, Govender T, Xiong CD (2008) Int J Pharm 353:74

    Article  CAS  Google Scholar 

  37. Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Carbohyd Polym 74:215

    Article  CAS  Google Scholar 

  38. Milašinović N, Krušić MK, Knežević-Jugović Z, Filipović J (2010) Int J Pharm 383:53

    Article  Google Scholar 

  39. Krušić MK, Filipović J (2006) Polymer 47:148

    Article  Google Scholar 

  40. Zhang N, Liu M, Shen Y, Chen J, Dai L, Gao C (2011) J Mater Sci 46:1523. doi:10.1007/s10853-010-4957-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (50773018), the Science and Technology Department of Henan Province (102300410119), the Education Department of Henan Province (2008A430003) and Henan University of Technology (2006BS043) for financial support. The authors also gratefully acknowledge a grant from Zhengzhou Science and Technology Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Liang Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, HL., Yao, K., Chu, HJ. et al. Click synthesis of the thermo- and pH-sensitive hydrogels containing β-cyclodextrins. J Mater Sci 47, 332–340 (2012). https://doi.org/10.1007/s10853-011-5802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5802-3

Keywords

Navigation