Skip to main content
Log in

Transport of acetate and sodium in sheep omasum: mutual, but asymmetric interactions

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We have studied the transport of acetate across the isolated epithelium of sheep omasum; no net transport was observed (J ms ≈ J sm) under Ussing chamber conditions. Low mucosal pH (pH 6.4) significantly enhanced J ms acetate and the transport rates of acetate increased linearly and significantly (r 2=0.99) with the luminal acetate concentration. The presence of another short chain fatty acid (propionate) did not affect J ms acetate significantly. Neither addition of 1 mmol l−1 DIDS to the mucosal side nor HCO3 replacement caused changes of J ms acetate; this does not support the assumption of acetate transport via anion exchange. Addition of 1 mmol l−1 amiloride to the mucosal side significantly decreased acetate fluxes at high mucosal acetate concentration (100 mmol l−1) and low pH (6.4) indicating interaction between acetate uptake in the undissociated form, intracellular release of protons and activation of Na+/H+ exchange (NHE). However, the mutual interaction between Na transport via NHE and acetate transport is asymmetric. Stimulation or inhibition of Na transport via NHE is much more pronounced than the corresponding changes of acetate fluxes. Thus, the obtained results support the conclusion that acetate is transported via simple diffusion and probably predominantly in the protonated form, thereby explaining the positive and mutual interaction between Na transport and short chain fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

G t :

conductance of the epithelium (mS cm−2)

I sc :

short circuit current (μeq cm−2 h−1)

J ms :

mucosal to serosal flux (μeq cm−2 h−1)

J sm :

serosal to mucosal flux (μeq cm−2 h−1)

J net :

Jms − Jsm (μeq cm−2 h−1)

NHE:

Na+/H+ exchanger

PDt :

Transepithelial potential difference (mV)

SCFA:

short chain fatty acids

References

  • Abdoun K, Wolf K, Arndt G, Martens H (2003) Effect of ammonia on Na+ transport across isolated rumen epithelium of sheep is diet dependent. Br J Nutr 90:751–758

    Article  PubMed  CAS  Google Scholar 

  • Abdoun K, Stumpff F, Wolf K, Martens H (2005) Modulation of Na transport of sheep rumen epithelium by luminal ammonia. Am J Physiol 289:G508–G520

    CAS  Google Scholar 

  • Allen MS (1997) Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci 80:1447–1462

    PubMed  CAS  Google Scholar 

  • Argenzio RA, Whipp SC (1979) Inter-relationship of sodium, chloride, bicarbonate and acetate transport by the colon of the pig. J Physiol 295:365–381

    PubMed  CAS  Google Scholar 

  • Aronson PS, Nee J, Suhm MA (1982) Modifier role of the internal H+ in activating Na+/H+ exchanger in renal microvillus membrane vesicles. Nature 299:161–163

    Article  PubMed  CAS  Google Scholar 

  • Asari M, Sasaki K, Kano Y, Nishita T (1989) Immunohistochemical localization of carbonic anhydrase isozymes I, II and III in the bovine salivary glands and stomach. Arch Histol Cytol 52:337–344

    Article  PubMed  CAS  Google Scholar 

  • Binder HJ, Mehta P (1990) Characterization of butyrate-dependent electroneutral Na–Cl absorption in the rat distal colon. Plügers Arch 417:365–369

    Article  CAS  Google Scholar 

  • Bödeker D, Lamy S, Mahler M, Höller H (1994) Effect of short chain fatty acids on electrophysiological properties and permeability characteristics of sheep (Ovis aries) abomasal mucosa. Comp Biochem Physiol A 107:73–79

    Article  Google Scholar 

  • Butzner JD, Meddings JB, Dalal V (1994) Inhibition of short chain fatty acid absorption and Na+ absorption during acute colitis in the rabbit. Gastroenterology 106:1190–1198

    PubMed  CAS  Google Scholar 

  • Cha B, Oh S, Shangmugaratnam J, Donowitz M, Yun CC (2002) Two histidin residues in the juxta-membrane cytoplasmatic domain of Na+/H+ exchanger isoform 3 (NHE§) determines the set point. J Membr Biol 191:49–58

    Article  CAS  Google Scholar 

  • Charney NA, Micic LJ, Egnor RW (1998) Nonionic diffusion of short chain fatty acids across rat colon. Am J Physiol 274:G518–G524

    PubMed  CAS  Google Scholar 

  • Dirksen G, Liebich HG, Brosi G, Hagemeister H, Mayer E (1984) Morphology of the rumen mucosa and fatty acid absorption in cattle, important factors for health and production. Zbl Vet Med A 31:414–430

    CAS  Google Scholar 

  • von Engelhardt W, Hauffe R (1975) Funktionen des Blättermagens bei kleinen Hauswiederkäuern. IV: Resorption und Sekretion von Elektrolyten. Zbl Vet Med A 22:363–375

    Google Scholar 

  • von Engelhardt W, Burmester M, Hansen K, Becker G, Rechkemmer G (1993) Effects of amiloride and ouabain on short-chain fatty acid transport in guinea-pig large intestine. J Physiol 460:455–466

    PubMed  Google Scholar 

  • von Engelhardt W, Burmester M, Hansen K, Becker G (1995) Unidirectional fluxes of short-chain fatty acids across segments of the large intestine in pig, sheep, and pony compared with guinea pig. J Comp Physiol B 165:29–36

    Article  PubMed  Google Scholar 

  • Gäbel G, Bestmann M, Martens H (1991a) Influences of diet, short chain fatty acids, lactate and chloride on bicarbonate movement across the reticulo-rumen wall of sheep. J Vet Med A 38:523–529

    Article  Google Scholar 

  • Gäbel G, Smith E, Martens H (1991b) Short-chain fatty acids and CO2 as regulators of Na+ and Cl absorption in isolated rumen mucosa. J Comp Physiol B 161:419–426

    Article  Google Scholar 

  • Gäbel G, Aschenbach JR, Müller F (2002) Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev 3:15–30

    Article  PubMed  CAS  Google Scholar 

  • Giesecke D, von Engelhardt W (1975) Funktionen des Blättermagens bei kleinen Hauswiederkäuern. II. Fermentationsrate und DNS-Gehalt. Zbl Vet Med A 22:177–186

    CAS  Google Scholar 

  • Kramer T, Michelberger T, Gürtler G, Gäbel G (1996) Absorption of short chain fatty acids across ruminal epithelium of sheep. J Comp Physiol 166:262–269

    CAS  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  • Leonhard-Marek S, Schröder B, Busche R (2004) Effects of chloride and sulphate ions on the surface pH of rumen epithelium. Proc Soc Nutr Physiol 13:58

    Google Scholar 

  • Martens H, Gäbel G (1988) Transport of Na and Cl across the eipthelium of ruminant forestomachs: rumen and omasum. A review. Comp Biochem Physiol A 90:569–575

    Article  PubMed  CAS  Google Scholar 

  • Martens H, Rayssiguier Y (1979) Magnesium metabolism and hypomagnesaemia. In: Digestive physiology and metabolism in ruminants. MTP Press, Clermont-Ferrand (1980), 447–466

  • Martens H, Krützfeld T, Wolf K (2004) Sodium transport across the isolated epithelium of sheep omasum is influenced by luminal ammonia. J Vet Med A Physiol Pathol Clin Med 51(2):46–51

    PubMed  CAS  Google Scholar 

  • Montrose MH, Chu S (1997) Transepithelial SCFA gradients regulate polarized Na+/H+ exchangers and pH microdomains in colonic epithelia. Comp Biochem Physiol A 118(2):389–393

    Article  CAS  Google Scholar 

  • Murray MG, Reid RS, Sutherland TM (1962) The rate of passage of digesta from the reticulorumen of sheep. J Physiol 164:26

    Google Scholar 

  • Müller F, Aschenbach JR, Gäbel G (2000) Role of Na+/H+ exchange and HCO3 transport in pHi recovery from intracellular acid load in cultured epithelial cells of sheep rumen. J Comp Physiol B 170:337–343

    Article  PubMed  Google Scholar 

  • Niebuhr V (2003) In vitro Untersuchungen zum Bicarbonattransport des Blättermagenepithels von Schafen. Diss., Berlin, Freie Universität

  • Petersen KU, Wood JR, Schulze G, Heitze K (1981) Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J Membr Biol 62:183–193

    Article  PubMed  CAS  Google Scholar 

  • Rajendran VM, Binder HJ (1994) Apical membrane Cl-butyrate exchange: mechanism of short chain fatty acid stimulation of active chloride absorption in rat distal colon. J Membr Biol 141:51–58

    PubMed  CAS  Google Scholar 

  • Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP (1998a) Identification of a monocarboxylate transporter isoform type 1 (MCT1) on the luminal membrane of human and pig colon. Biochem Soc Trans 26(2):S120

    CAS  Google Scholar 

  • Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP (1998b) Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol 513:719–732

    Article  CAS  Google Scholar 

  • Rowe WA, Blackmon DL, Montrose MH (1993) Propionate activates multiple transport mechanisms in the HT29–18-C1 human colon cell line. Am J Physiol 265:G564–G571

    PubMed  CAS  Google Scholar 

  • Schultheiß G, Martens H (1999) Ca-sensetive Na transport in sheep omasum. Am J Physiol 276:G1331–G1344

    PubMed  Google Scholar 

  • Sehested J, Diernaes L, Moller PD, Skadhauge E (1999a) Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro: effect of SCFA chain length and pH. Comp Biochem Physiol A 123:359–368

    Article  CAS  Google Scholar 

  • Sehested J, Diernaes L, Moller PD, Skadhauge E (1999b) Transport of butyrate across the isolated bovine rumen epithelium. Interaction with sodium, chloride and bicarbonate. Comp Biochem Physiol A 123:399–408

    CAS  Google Scholar 

  • Sellin JH, Soigne RD (1987) Ionic regulation of Na absorption in proximal colon: cation inhibition of electroneutral Na absorption. Am J Phys 252:G100–G108

    CAS  Google Scholar 

  • Sellin JH, Soigne RD (1998) Schort-chain fatty acids have polarized effects on sodium transport and intrazellular pH in rabbit proximal colon. Gastroenterology 114:737–747

    Article  PubMed  CAS  Google Scholar 

  • Sellin JH, Soigne RD, Burlingame S (1993) Segmental differences in short-chain fatty acid transport in rabbit colon: effect of pH and Na. J Membr Biol 136:147–158

    Article  PubMed  CAS  Google Scholar 

  • Smith RH (1984) Microbial activity in the omasum. Proc Nutr Soc 43:63–68

    Article  PubMed  CAS  Google Scholar 

  • Tamminga S, van Vuuren AM (1988) Formation and utilization of end products of lignocellulose degradation in ruminants. Anim Feed Sci Techn 21:141–159

    Article  Google Scholar 

  • Tiling C (1997) In vitro Untersuchungen zum Chloridionentransport des Blättermagenepithels von Schafen. Diss., Berlin, Freie Universität

  • Tyagi S, Venugopalakrishnan J, Ramaswamy K, Dudeja PK (2002) Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes. Am J Physiol 282:G676–G682

    CAS  Google Scholar 

  • Umesaki Y, Yajima T, Yokokura T, Mutai M (1979) Effect of organic acid absorption on bicarbonate transport in rat colon. Pflügers Arch 379:43–47

    Article  PubMed  CAS  Google Scholar 

  • Vernay M (1986) Colonic absorption of inorganic ions and volatile fatty acids in the rabbit. Comp Biochem Physiol A 83:775–784

    Article  PubMed  CAS  Google Scholar 

  • Vidyasagar S, Rajendran VM, Binder HJ (2004) Three distinct mechanisms of HCO 3 secretion in rat distal colon. Am J Physiol 287:C612–C621

    Article  CAS  Google Scholar 

  • Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM (2005) Role of short-chain fatty acids in colonic HCO3 secretion. Am J Physiol 288:G1217–G1226

    CAS  Google Scholar 

  • Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the DAAD and of the Wilhelm Schaumann Foundation (scholarship O. Ali). Z. Shen is recipient of a grant of the BMVEL (Bonn) and of the National Nature Science Foundation of China (30471252). This study is part of a grant of the Margarete-Markus-Charity (MMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Martens.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, O., Shen, Z., Tietjen, U. et al. Transport of acetate and sodium in sheep omasum: mutual, but asymmetric interactions. J Comp Physiol B 176, 477–487 (2006). https://doi.org/10.1007/s00360-006-0069-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0069-8

Keywords

Navigation