Skip to main content
Log in

Permeability of small nonelectrolytes through lipid bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Diffusion of small nonelectrolytes through planar lipid bilayer membranes (egg phosphatidylcholine-decane) was examined by correlating the permeability coefficients of 22 solutes with their partition coefficients between water and four organic solvents. High correlations were observed with hexadecane and olive oil (r=0.95 and 0.93), but not octanol and ether (r=0.75 and 0.74). Permeabilities of the seven smallest molecules (mol wt <50) (water, hydrofluoric acid, hydrochloric acid, ammonia, methylamine, formic acid and formamide) were 2- to 15-fold higher than the values predicted by the permeabilities of the larger molecules (50<mol wt<300). The “extra” permeabilities of the seven smallest molecules were not correlated with partition coefficients but were inversely correlated with molecular volumes. The larger solute permeabilities also decreased with increasing molecular volume, but the relationship was neither steep nor significant. The permeability pattern cannot be explained by the molecular volume dependence of partitioning into the bilayer or by the existence of transient aqueous pores. The molecular volume dependence of solute permeability suggests that the membrane barrier behaves more like a polymer than a liquid hydrocarbon. All the data are consistent with the “solubility-diffusion” model, which can explain both the hydrophobicity dependence and the molecular volume dependence of nonelectrolyte permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amerongen, G.J. van 1964. Diffusion in elastomers.Rubber Chem. Technol. 37:1065–1152

    Google Scholar 

  • Andersen, O.S. 1978. Permeability properties of unmodified lipid bilayer membranes.In: Membrane Transport in Biology. Vol. I, pp. 369–446. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Spring-Verlag, New York

    Google Scholar 

  • Antonenko Y.N., Yaguzhinsky, L.S. 1982. Generation of potential in lipid bilayer membranes as a result of proton-transfer reactions in the unstirred layers.J. Bioenerg. Biomembr. 14:457–465

    PubMed  Google Scholar 

  • Antonenko, Y.N., Yaguzhinsky, L.S. 1984. The role of pH gradient in the unstirred layers in the transport of weak acids and bases through bilayer lipid membranes.Bioelectrochem. Bioenerg. 13:85–91

    Google Scholar 

  • Benson, J.R., Hare, P.E. 1975.o-Phthalaldehyde: Fluorogenic detection of primary amines in the picomole ranges. Comparison with fluorescamine and ninhydrin.Proc. Natl. Acad. Sci. USA 72:619–622

    PubMed  Google Scholar 

  • Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxyphenylhydrazone).Biophys. J. 41:381–398

    PubMed  Google Scholar 

  • Bindslev, N., Wright, E.M. 1976. Effect of temperature on non-electrolyte permeation across the toad urinary bladder.J. Membrane Biol. 29:265–288

    Google Scholar 

  • Cohen, B.E. 1975a. The permeability of liposomes to nonelectrolytes: I. Activation energies for permeation.J. Membrane Biol. 20:205–234

    Google Scholar 

  • Cohen, B.E. 1975b. The permeability of liposomes to nonelectrolytes: II. The effect of nystatin and gramicidin A.J. Membrane Biol. 20:235–268

    Google Scholar 

  • Collander, R. 1949. The permeability of plant protoplasts to small molecules.Physiol. Plant. 2:300–311

    Google Scholar 

  • Collander, R. 1954. The permeability ofNitella cells to nonelectrolytes.Physiol. Plant. 7:420–445

    Google Scholar 

  • Diamond, J.M., Katz, Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water.J. Membrane Biol. 17:121–154

    Google Scholar 

  • Diamond, J.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:582–646

    Google Scholar 

  • Dilger, J., McLaughlin, S. 1979. Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles.J. Membrane Biol. 46:359–384

    Google Scholar 

  • Evans, D.F., Tominaga, T., Davis, H.T. 1981. Tracer diffusion in polyatomic liquids.J. Chem. Phys. 74:1298–1305

    Google Scholar 

  • Fettiplace, R., Haydon, D.A. 1980. Water permeability of lipid membranes.Physiol. Rev. 60:510–550

    PubMed  Google Scholar 

  • Finkelstein, A. 1976a. Water and nonelectrolyte permeability of lipid bilayer membranes.J. Gen. Physiol. 68:127–135

    PubMed  Google Scholar 

  • Finkelstein, A. 1976b. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder.J. Gen. Physiol. 68:137–143

    PubMed  Google Scholar 

  • Finkelstein, A. 1977. Reply to a comment on the water permeability through planar lipid bilayers.J. Gen. Physiol. 70:125–127

    Google Scholar 

  • Gutknecht, J., Tosteson, D.C. 1973. Diffusion of weak acids through lipid bilayer membranes: Effects of chemical reactions in the aqueous unstirred layers.Science 182:1258–1261

    PubMed  Google Scholar 

  • Gutknecht, J., Walter, A. 1981a. Transport of protons and hydrochloric acid through lipid bilayer membranes.Biochim. Biophys. Acta 641:183–188

    PubMed  Google Scholar 

  • Gutknecht, J., Walter, A. 1981b. Hydrofluoric and nitric acid transport through lipid bilayer membranes.Biochim. Biophys. Acta 644:153–156

    PubMed  Google Scholar 

  • Gutknecht, J., Walter, A. 1981c. Histamine, theophylline and tryptamine transport through lipid bilayer membranes.Biochim. Biophys. Acta 649:149–154

    PubMed  Google Scholar 

  • Gutknecht, J., Walter, A. 1982. SCN and HSCN transport through lipid bilayer membranes: A model for SCN inhibition of gastric acid secretion.Biochim. Biophys. Acta 685:233–240

    PubMed  Google Scholar 

  • Hanai, T., Haydon, D.A. 1966. The permeability to water of bimolecular lipid membranes.J. Theoret. Biol. 11:370–382

    Google Scholar 

  • Hayduk, W., Ioakimidis, S. 1976. Liquid diffusivities in normal paraffin solutions.J. Chem. Eng. Data 21:255–260

    Google Scholar 

  • Hayduk, W., Laudie, H. 1974. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions.Am. Inst. Chem. Eng. J. 20:611–615

    Google Scholar 

  • Hung, G.W.C., Autian, J. 1972. Use of thermal gravimetric analysis in sorption studies: II. Evaluation of diffusivity and solubility of a series of aliphatic alcohols in polyurethan.J. Pharmaceut. Sci. 61:1094–1098

    Google Scholar 

  • Kimmich, R., Peters, A., Spohn, K.H. 1981. Solubility of oxygen in lecithin bilayers and other hydrocarbon lamellae as a probe for free volume and transport properties.J. Membrane Sci. 9:313–336

    Google Scholar 

  • Koroleff, F. 1969. Direct determination of ammonia in natural waters as indophenol blue.In: Information on Techniques and Methods for Seawater Analysis. International Council for the Exploration of the Sea. Interlab Report No. 3, pp. 19–22

  • Leo, A., Hansch, C., Elkins, D. 1971. Partition coefficients and their uses.Chem. Rev. 71:525–616

    Google Scholar 

  • Lieb, W.R., Stein, W.D. 1969. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of nonelectrolytes.Nature (London) 224:240–243

    Google Scholar 

  • Lieb, W.R., Stein, W.D. 1971. The molecular basis of simple diffusion within biological membranes.Curr. Top. Membr. Transp. 2:1–39

    Google Scholar 

  • Macey, R. 1948. Partition coefficients of fifty compounds between olive oil and water.J. Ind. Hyg. Toxicol. 30:140–143

    Google Scholar 

  • Miller, K.W., Hammond, L., Porter, E.G. 1977. The solubility of hydrocarbon gases in lipid bilayers.Chem. Phys. Lipids 20:229–241

    Google Scholar 

  • Morrison, R.T., Boyd, R.N. 1973. Organic Chemistry. (3rd ed.) Allyn & Bacon, Boston

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1969. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.Curr. Top. Bioenerg. 3:157–249

    Google Scholar 

  • Orbach, E., Finkelstein, A. 1980. The nonelectrolyte permeability of planar lipid bilayer membranes.J. Gen. Physiol. 75:427–436

    PubMed  Google Scholar 

  • Overton, E. 1899. Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung fur die Physiologie.Vierteljahrsschr. Naturforsch. Ges. Zuerich 44:88–135

    Google Scholar 

  • Perry, J.H. (editor) 1963. Chemical Engineer's Handbook. (4th ed.) pp. 14–20. McGraw-Hill, New York

    Google Scholar 

  • Petersen, D.C. 1983. The water permeability of the monoolein/triolein bilayer membrane.Biochim. Biophys. Acta 734:201–209

    Google Scholar 

  • Rossi, C., Bianchi, E., Rossi, P. 1958. Mesures de diffusion dans le benzene.J. Chim. Phys. 55:97–101

    Google Scholar 

  • Roth, M. 1971. Fluorescein reaction for amino acids.Anal. Chem. 43:880–882

    PubMed  Google Scholar 

  • Schatzberg, P. 1965. Diffusion of water through hydrocarbon liquids.J. Polym. Sci. Part C. 10:87–92

    Google Scholar 

  • Schneider, F.L. 1964. Qualitative microanalysis: Cognition and recognition of carbon compounds. Academic Press, New York

    Google Scholar 

  • Shalafi, R.I. 1981. Permeability for water and other polar molecules.In: Membrane Transport. S.L. Bonting and J.J.H.H.M. de Pont, editors. pp. 29–60. Elsevier/North-Holland Biomedical, New York

    Google Scholar 

  • Simon, S.A., Gutknecht, J. 1980. Solubility of carbon dioxide in lipid bilayer membranes and organic solvents.Biochim. Biophys. Acta 596:352–358

    PubMed  Google Scholar 

  • Simon, S.A., Stone, W.L., Busto-Latorre P. 1977. A thermodynamic study of the partition ofn-hexane into phosphatidylcholine and phosphatidylcholine-cholesterol bilayers.Biochim. Biophys. Acta 468:378–388

    PubMed  Google Scholar 

  • Stein, W.D. 1981. Permeability for lipophilic molecules.In: Membrane Transport. S.L. Bonting and J.J.H.H.M. de Pont, editors. pp. 1–28. Elsevier/North-Holland Biomedical, New York

    Google Scholar 

  • Strickland, J.D.H., Parsons, T.R. (editors) 1972. A Manual of Sea Water analysis. (2nd ed.) Bulletin No. 167. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Subczynski, W.K., Hyde, J.S. 1984. Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spinlabel technique.Biophys. J. 45:743–748

    PubMed  Google Scholar 

  • Sutherland, G.B.B.M. 1905. A dynamical theory of diffusion for nonelectrolytes and the molecular mass of albumin. Philos. Mag. (S. 6)9:781–785

    Google Scholar 

  • Träuble, H. 1971. The movement of molecules across lipid membranes: A molecular theory.J. Membrane Biol. 4:193–208

    Google Scholar 

  • Walter, A. 1981. Nonelectrolyte Permeability of Lipid Bilayer Membranes. Ph.D. Thesis. Duke University. University Microfilms, Ann Arbor, Michigan

    Google Scholar 

  • Walter, A., Gutknecht, J. 1984. Monocarboxylic acid permeation through lipid bilayer membranes.J. Membrane Biol. 77:255–264

    Google Scholar 

  • Walter, A., Hastings, D., Gutknecht, J. 1982. Weak acid permeability through lipid bilayer membranes: Role of chemical reactions in the unstirred layer.J. Gen. Physiol. 79:917–933

    PubMed  Google Scholar 

  • Weaver, J.C., Powell, K.T., Mintzer, R.A., Sloan, S.R., Ling, H. 1984. The diffusive permeability of bilayer membranes: The contribution of transient aqueous pores.Bioelectrochem. Bioenerg. 12:405–412

    Google Scholar 

  • Wolosin, J.M., Ginsburg, H. 1975. The permeation of organic acids through lecithin bilayers: Resemblance to diffusion in polymers.Biochim. Biophys. Acta 389:20–33

    PubMed  Google Scholar 

  • Wolosin, J.M., Ginsburg, H., Lieb, W.R., Stein, W.D. 1978. Diffusion within egg lecithin bilayers resembles that within soft polymers.J. Gen. Physiol. 71:93–100

    PubMed  Google Scholar 

  • Wright, E.M., Bindslev, N. 1976. Thermodynamic analysis of nonelectrolyte permeation across the toad urinary bladder.J. Membrane Biol. 29:289–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, A., Gutknecht, J. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membrain Biol. 90, 207–217 (1986). https://doi.org/10.1007/BF01870127

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870127

Key Words

Navigation