Skip to main content

Advertisement

Log in

Contrasting effects of ocean acidification on reproduction in reef fishes

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 μatm), moderate (652 μatm) or high CO2 (912 μatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45–75 % more egg clutches produced and a 47–56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aze T, Barry J, Bellerby RG, Brander L, Byrne M, Dupont S, Gattuso JP, Gibbs S, Hansson L, Hattam C, Hauton C, Havenhand J, Fosså JH, Kavanagh C, Kurihara H, Matear RJ, Mark FC, Melzner F, Munday PL, Niehoff B, Pearson P, Rehdanz K, Tambutte S, Turley CM, Venn A, Warnau M, Young JR (2014) An updated synthesis of the impacts of ocean acidification on marine biodiversity. In: Hennige S, Roberts J, Williamson P (eds) CBD Technical Series 75, Secretariat of the Convention on Biological Diversity, Montreal, Québec, Canada pp 99

  • Barry JP, Widdicombe S, Hall-Spencer JM (2011) Effects of ocean acidification on marine biodiversity and ecosystem function. In: Gattuso JP, Hannson L (eds) ocean acidification. Oxford University Press, Oxford, p 326

    Google Scholar 

  • Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Chang 2:38–41

    Article  CAS  Google Scholar 

  • Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149:1247–1256

    Article  Google Scholar 

  • Brauner CJ, Baker DW (2009) Patterns of acid-base regulation during exposure to hypercarbia in fishes. In: Glass ML, Woods SC (eds) Cardi-respiratory control in vertebrates. Springer, Berlin, Germany, pp 43–63

    Chapter  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Chan KYK, Grünbaum D, Arnberg M, Dupont S (2015) Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J Mar Sci. doi:10.1093/icesjms/fsv073

    Google Scholar 

  • Collins WJ, Fry MM, Yu H, Fuglestvedt JS, Shindell DT, West JJ (2013) Global and regional temperature-change potentials for near-term climate forcers. Atmos Chem Phys 13:2471–2485

    Article  CAS  Google Scholar 

  • Couturier CS, Stecyk JAW, Rummer JL, Munday PL, Nilsson GE (2013) Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comp Biochem Physiol A Mol Integr Physiol 166:482–489

    Article  CAS  PubMed  Google Scholar 

  • Cox RM, Parker EU, Cheney DM, Liebl AL, Martin LB, Calsbeek R (2010) Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Funct Ecol 24:1261–1269

    Article  Google Scholar 

  • Cushing DH (1969) The regularity of the spawning season of some fishes. J Cons Int Explor Mer 33:81–92

    Article  Google Scholar 

  • Dawson A (2008) Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos Trans R Soc B Biol Sci 363:1621–1633

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Donelson JM, Munday PL, McCormick MI, Pankhurst NW, Pankhurst PM (2010) Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar Ecol Prog Ser 401:233–243

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Drew J, Allen GR, Kaufman L, Barber PH (2008) Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes. Conserv Biol 22:921–934

    Article  Google Scholar 

  • Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2013) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843

    Article  CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MA, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt Ö, Chivers DP (2011) Putting prey and predator into the CO2 equation–qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol Lett 14:1143–1148

    Article  PubMed  Google Scholar 

  • Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmessen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Chang 2:42–46

    Article  CAS  Google Scholar 

  • Grazer VM, Martin OY (2011) Elevated temperature changes female costs and benefits of reproduction. Evol Ecol 26:625–637

    Article  Google Scholar 

  • Hamilton TJ, Holcombe A, Tresguerres M (2013) CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc R Soc Lond B Biol Sci 281:20132509

    Article  Google Scholar 

  • Henderson LP (2007) Steroid modulation of GABAA receptor-mediated transmission in the hypothalamus: effects on reproductive function. Neuropharmacology 52:1439–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307:R1061–R1084

    Article  CAS  PubMed  Google Scholar 

  • Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2, acidified oceans. Mar Ecol Prog Ser 373:295–302

    Article  CAS  Google Scholar 

  • Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J (2004) Effects of CO2 on marine fish: larvae and adults. Journal of Oceanography 60:731–741

    Article  CAS  Google Scholar 

  • Kavanagh K (2000) Larval brooding in the marine damselfish Acanthochromis polyacanthus (Pomacentridae) is correlated with highly divergent morphology, ontogeny and life-history traits. Bull Mar Sci 66:321–337

    Google Scholar 

  • Khan IA, Thomas P (1999) GABA exerts stimulatory and inhibitory influences on gonadotropin ΙΙ secretion in the atlantic croaker (Micropogonias undulatus). Neuroendocrinology 69:261–268

    Article  CAS  PubMed  Google Scholar 

  • Langer G, Geisen M, Baumann KH, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosyst 7:Q09006. doi:10.1029/2005GC001227

    Article  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnaola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Article  PubMed  Google Scholar 

  • Mañanos EL, Anglade I, Chyb J, Saligaut C, Breton B, Kah O (1999) Involvement of gamma-aminobutyric acid in the control of GTH-1 and GTH-2 secretion in male and female rainbow trout. Neuroendocrinology 69:269–280

    Article  PubMed  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 73:428–434

    Article  CAS  PubMed  Google Scholar 

  • Michael SW (2008) Damselfishes and anemonefishes: the complete illustrated guide to their identification, behaviours, and captive care. TFH Publications, New Jersey

    Google Scholar 

  • Miller GM, Watson SA, McCormick MI, Munday PL (2013) Increased CO2 stimulates reproduction in a coral reef fish. Glob Chang Biol 19:3037–3045

    Article  PubMed  Google Scholar 

  • Miller GM, Kroon FJ, Metcalfe S, Munday PL (2015) Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecol Appl 25:603–620

    Article  CAS  PubMed  Google Scholar 

  • Munday PL, Donelson JM, Dixson DL, Endo GGK (2009) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc Lond B Biol Sci 276:3275–3283

    Article  CAS  Google Scholar 

  • Munday PL, Gagliano M, Donelson JM, Dixson DL, Thorrold SR (2011) Ocean acidification does not affect the early life history development of a tropical marine fish. Mar Ecol Prog Ser 423:211–221

    Article  Google Scholar 

  • Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørenson C, Watson S-A, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Chang 2:201–204

    Article  CAS  Google Scholar 

  • Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun S-S, Brauner CJ (2015) Responses of pink salmon to CO2-induced aquatic acidification. Nat Clim Chang 5:950–955

    Article  CAS  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Chang Biol 15:2123–2136

    Article  Google Scholar 

  • Pimentel MS, Faleiro F, Dionísio G, Repolho T, Pousão-Ferreira P, Machado J, Rosa R (2014) Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J Exp Biol 217:2062–2070

    Article  PubMed  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge, TN

    Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschlager A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718

    Article  Google Scholar 

  • Randall JE, Allen GR, Steene RC (1990) Fishes of the Great Barrier Reef and Coral Sea. University of Hawaii Press, Hawaii

    Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Strahl J, Stolz I, Uthicke S, Vogel N, Noonan SHC, Fabricius KE (2015) Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comp Biochem Physiol A Mol Integr Physiol 184:179–186

    Article  CAS  PubMed  Google Scholar 

  • Strobel A, Bennecke S, Leo E, Mintenbeck K, Pörtner HO, Mark FC (2012) Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Front Zool 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trudeau VL, Sloley BD, Peter RE (1993) GABA stimulation of gonadotropin-ΙΙ release in goldfish: involvement of GABAA receptors, dopamine, and sex steroids. Am J Physiol Regul Integr Comp Physiol 265:348–355

    Google Scholar 

  • Trudeau VL, Spanswick D, Fraser EJ, Lariviere K, Crump D, Chiu S, MacMillan M, Schulz RW (2000) The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochem Cell Biol 78:241–259

    Article  CAS  PubMed  Google Scholar 

  • Van Der Kraak G (2009) The GnRH system and the neuroendocrine regulation of reproduction. In: Bernier NJ, Van Der Kraak G, Farrell AP, Brauner CJ (eds) Fish physiology: fish neuroendocrinology. Elsevier, Oxford, pp 115–140

    Chapter  Google Scholar 

  • Visser ME, Lessells CM (2001) The costs of egg production and incubation in great tits (Parus major). Proc R Soc Lond B Biol Sci 268:1271–1277

    Article  CAS  Google Scholar 

  • Visser ME, Holleman LJM, Caro SP (2009) Temperature has a causal effect on avian timing of reproduction. Proc R Soc Lond B Biol Sci 276:2323–2331

    Article  Google Scholar 

  • Vogel N, Fabricius KE, Strahl J, Noonan SHC, Wild C, Uthicke S (2015) Calcareous green alga Halumeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol Oceanogr 60:263–275

    Article  CAS  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Watson PJ, Arnqvist G, Stallmann RR (1998) Sexual conflict and the energetic costs of mating and mate choice in water striders. Am Nat 151:46–58

    Article  CAS  PubMed  Google Scholar 

  • Weydmann A, Søreide JE, Kwasniewski SK, Widdicombe S (2012) Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J Exp Mar Bio Ecol 428:39–42

    Article  CAS  Google Scholar 

  • Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165:438–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ben Lawes, Simon Wever and Andrew Thompson for their support with the aquarium systems. Special thanks to Sue-Ann Watson, Jennifer Donelson and Gabrielle Miller for assistance with breeding designs. Funding for this project was provided by the ARC Centre of Excellence for Coral Reef Studies (PLM) and the College of Marine and Environmental Sciences at James Cook University (MJW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan J. Welch.

Additional information

Communicated by Biology Editor Dr. Mark R. Patterson

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welch, M.J., Munday, P.L. Contrasting effects of ocean acidification on reproduction in reef fishes. Coral Reefs 35, 485–493 (2016). https://doi.org/10.1007/s00338-015-1385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1385-9

Keywords

Navigation