Skip to main content

Advertisement

Log in

Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The microbial activity in the soils of the permafrost-affected zones is assumed to be one of the major factors that modify the organic carbon and nitrogen cycle under current climate change. In contrast to the extensive research centered on bacterial abundance, diversity, and metabolic activity in permanently and seasonally frozen mineral soils from high latitudes, frozen peat (organic) environments remain poorly characterized in terms of the physiological diversity and metabolic potential of bacteria. The evolution of soil heterotroph microbial number and metabolic activity across the “seasonally thawed (active)—permanently frozen layer” boundary was studied on 100-cm-thick cores from frozen peat mounds located in the discontinuous permafrost zone in western Siberia. There was a systematic decrease of metabolic activity in the upper 40 cm of the peat core from the surface layers of the mosses and lichens towards the beginning of the frozen horizon, followed by an abrupt increase in bacterial metabolism exactly at the border between the thawed layer and the permafrost table. The aerobic viable cell count and total bacterial number from the active layer were similar to those from the permafrost peat layer. The highest metabolic activity was observed at the beginning of the frozen peat layer and might correspond to the highest availability of amino substrates, which were depleted in the active layer but preserved in the deeper frozen horizons. The enhanced microbial activity at the frozen peat-active layer boundary in western Siberia may persist for another 50–100 years based on the current rate of increase in active layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Article  Google Scholar 

  • Akerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost Periglacial Proc 19:279–292

    Article  Google Scholar 

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  CAS  Google Scholar 

  • Artz RRE (2009) Microbial community structure and carbon substrate use in Northern peatlands. In: Baird AJ, Belya LR, Comas X, Reeve AS, Slater LD (eds) Carbon cycling in northern peatlands, geophysical monograph series, vol 184. American Geophysical Union, Washington, DC

    Google Scholar 

  • Artz RRE, Chapman SJ, Campbell CD (2006) Substrate utilization profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biol Biochem 38:2958–2962

    Article  CAS  Google Scholar 

  • Baker JH (1970) Yeast, moulds and bacteria from an acid peat on Signy Island. In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic Press, London, pp 717–722

    Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V (2003) Reproduction and metabolism at −10 °C of bacteria isolated from Siberian permafrost. Environ Microbiol 5(4):321–326

    Article  PubMed  Google Scholar 

  • Boddy E, Roberts P, Hill PW, Farrar J, Jones DL (2008) Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol Biochem 40:1557–1566

    Article  CAS  Google Scholar 

  • Bunnell FL, MacLean SF Jr, Brown J (1975) Barrow, Alaska, USA. In: Rosswall T, Neal OM (eds) Presented at the IBP Tundra Biome V International Meeting on Biological Productivity of Tundra, Abisko, Sweden, April 1974. Ecological Bulletins 20. Swedish Natural Science Research Council, Stockholm, pp. 173–194

  • Bunnell FL, Miller AK, Flanagan PW, Benoit RE (1980) The microflora: composition, biomass and environmental relations. In: Brown J, Miller PC, Tieszen LT, Bunnell FL (eds) An arctic ecosystem: the coastal tundra at Barrow, Alaska. US/IBP Synthesis Series-12, Stroudsburg, Pennsylvania, pp 255–290. http://www.arlis.org/docs/vol1/B/5564803.pdf (ISBN 0-87933-370-7)

  • Calbrix R, Laval K, Barray S (2005) Analysis of the potential functional diversity of the bacterial community in soil: a reproducible procedure using sole-carbon-source utilization profiles. Eur J Soil Biol 41:11–20

    Article  CAS  Google Scholar 

  • Čapek P, Diakova K, Dickopp JE, Barta J, Wild B, Schnecker J et al (2015) The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol Biochem 90:19–29

    Article  Google Scholar 

  • Christian BW, Lind OT (2006) Key issues concerning biolog use for aerobic and anaerobic freshwater bacterial community-level physiological profiling. Int Rev Hydrobiol 91:257–268

    Article  Google Scholar 

  • Coolen MJL, van de Giessen J, Zhu EY, Wuchter C (2011) Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 13(8):2299–2314

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Russell N, Mamais A, Sheppard DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Gu Y, Zhang J, Xue K, Qin Y, Yuan M, Yin H, He Z, Schuur EAG, Tiedje JM, Zhou J (2015) Shifts of tundra bacterial and archael communities along a permafrost thaw gradient in Alaska. Mol Ecol 24:222–234

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaya TG, Golovchenko AV, Zvyagintsev DG (2014) Analysis of ecological factors limiting the degradation of peat. Pochvovedenie 3:304–316, doi:10.7868/S0032180X14030046

    Google Scholar 

  • Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. PNAS 112(45):13946–13951. doi:10.1073/pnas.1511705112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of North-eastern Siberia. Glob Change Biol 12:2336–2351

    Article  Google Scholar 

  • Ernakovich JG, Wallenstein MD (2015) Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biol Biochem 87:78–89

    Article  CAS  Google Scholar 

  • Fisher MM, Graham JM, Graham LE (1998) Bacterial abundance and activity across sites within two Northern Wisconsin Sphagnum bogs. Microbial Ecol 36:259–269

    Article  CAS  Google Scholar 

  • Foster A, Jones DL, Cooper EJ, Roberts P (2016) Freeze-thaw cycles have minimal effect on the mineralization of low molecular weight, dissolved organic carbon in Arctic soils. Polar Biol. doi:10.1007/s00300-016-1914-1

    Google Scholar 

  • Frank-Fahle BA, Yergeau E, Greer CW, Lantuit H, Wagner D (2014) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS One 9(1):e84761. doi:10.1371/journal.pone.0084761

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedmann EI (1994) Permafrost as microbial habitat. In: Gilichinsky DA (ed) Viable microorganisms in permafrost. Russian Academy of Sciences, Pushchino, pp 21–26

    Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Gittel A, Barta J, Kohoutova I, Mikutta R, Owens S et al (2014a) Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J 8:841–853. doi:10.1038/ismej.2013.219

    Article  CAS  PubMed  Google Scholar 

  • Gittel A, Barta J, Lacmanova I, Schnecker J, Wild B, Capek P, Kaiser C, Torsvik V, Richter A, Schleper C, Urich T (2014b) Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front Microbiol 5:00541, doi:10.3389/fmicb.2014.00541

    Article  Google Scholar 

  • Golovchenko AV, Semenova TA, Polyakova AV, Inisheva LI (2002) The structure of the micromycete complexes of oligotrophic peat deposits in the southern taiga subzone of West Siberia. Microbiology 71:575–581

    Article  CAS  Google Scholar 

  • Golovchenko AV, Sannikova IV, Dobrovol’skaia TG, Zviagintsev LI (2005) The saprotrophic bacterial complex in the raised peat bogs of Western Siberia. Mikrobiologiia 74:545–551

    CAS  PubMed  Google Scholar 

  • Golovchenko AV, Tikhonova EY, Zvyaginster DG (2007) Abundance, biomass, structure and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands. Microbiology 76:630–637

    Article  CAS  Google Scholar 

  • Grover JP, Chrzanowski TH (2000) Seasonal patterns of substrate utilization by bacterioplankton: case studies in four temperate lakes of different latitudes. Aquat Microb Ecol 23:41–54

    Article  Google Scholar 

  • Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM et al (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884

    Article  CAS  PubMed  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  • Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71(2):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenarova A, Encheva M, Chipeva V, Chipev N, Hristova P, Moncheva P (2013) Physiological diversity of bacterial communities from different soil locations on Livingstone Island, South Shetland archipelago, Antarctica. Polar Biol 36:223–233

    Article  Google Scholar 

  • Keuper F, van Bodegom PM, Dorrepaal E, Weedon JT, van Hal J, van Logtestijn RSP, Aerts R (2012) A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob Change Biol 18:1998–2007

    Article  Google Scholar 

  • Khrenov VYa (2011) Soils of cryolithozone of western Siberia: Morphology, physico-chemical properties and geochemistry. Nauka, Moscow (Russian)

    Google Scholar 

  • Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L et al (2014) Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol Ecol 89:465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka A, Oliver L, Turco R (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecol 35:103–115

    Article  CAS  Google Scholar 

  • Kremenetski KV, Velichko AA, Borisova OK, MacDonald GM, Smith LC, Frey KE, Orlova LA (2003) Peatlands of the West Siberian Lowlands: Current knowledge on zonation, carbon content, and Late Quaternary history. Quat Sci Rev 22:703–723

    Article  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900. doi:10.1111/j.1365-2745.2009.01538.x

    Article  CAS  Google Scholar 

  • Leflaive J, Danger M, Lacroiz G, Lyautey E, Oumarou C, Ten-Hage L (2008) Nutrient effects on the genetic and functional diversity of aquatic bacterial communities. FEMS Microbiol Ecol 66:379–390

    Article  CAS  PubMed  Google Scholar 

  • Liss OL, Abramova LI, Avetov NA, Berezina NA, Inisheva LI, Kurnishnikova TV, Sluka ZA, Shvedchikova NK (2001) Wetland systems of west siberia and their importance for nature conservation. Grif i K Publisher, Tula (in Russian)

    Google Scholar 

  • Lohmus K, Truu M, Truu J, Ostonen I, Kaar E, Vares A, Uri V, Alama S, Kanal A (2006) Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas. Plant Soil 283:1–10

    Article  CAS  Google Scholar 

  • Lyons MM, Dobbs FC (2012) Differential utilization of carbon substrates by aggregate-associated and water-asscoiated heterotrophic bacterial communities. Hydrobiologia 686:181–193

    Article  CAS  Google Scholar 

  • Makhatkov ID, Ermolov YuV (2015) The thermal regime of active layer of pit-covered terrain in northern taiga. Mezhdunarodnyi Zhurnal Prikladnukh i fundamentalnukh issledovanii. Internat J Appl Fund Stud 215(11):400–407. http://www.applied-research.ru/ru/article/view?id=7749.

  • Manasypov RM, Vorobyev SN, Loiko SV, Kritzkov IV, Shirokova LS, Shevchenko VP, Kirpotin SN, Kulizhsky SP, Kolesnichenko LG, Zemtzov VA, Sinkinov VV, Pokrovsky OS (2015) Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences 12:3009–3028

    Article  CAS  Google Scholar 

  • Mauquoy D, Hughes PDM, van Geel B (2010) A protocol for plant macrofossil analysis of peat deposits. Mires Peat 7: Art. 6. http://www.mires-and-peat.net/pages/volumes/map07/map0706.php. Assessed 1 Apr 2016

  • Meyer H, Kaiser C, Biasi C, Hammerle R, Rusalimova O, Lashchinsky N, Baranyi C, Daims H, Barsukov P, Richter A (2006) Soil carbon and nitrogen dynamics along a latitudinal transect in Western Siberia, Russia. Biogeochemistry 81:239–252

    Article  CAS  Google Scholar 

  • Novikov SM, Moskvin YP, Trofimov SA, Usova LI, Batuev VI., Tumanovskaya SM, Smirnova VP, Markov ML, Korotkevicth AE, Potapova TM (2009) Hydrology of bog territories of the permafrost zone of western Siberia. BBM publ. House, St. Petersbourg (in Russian)

    Google Scholar 

  • Palmer K, Horn MA (2012) Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl Environ Microbiol 78(16):5584–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer K, Horn MA (2015) Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is N-oxide limited. PLoS One 10(4), art. no. e0123123. doi:10.1371/journal.pone.0123123

    Article  Google Scholar 

  • Parinkina OM (1974) Bacterial production in tundra soils. In: Holding AJ, Heal OW, MacLean, Jr SF, Flanagan PW (eds) Soil organisms and decomposition in Tundra. Tundra Biome Steering Committee, Stockholm, pp 65–77

  • Parinkina OM (1989) Microflora of tundra soils: ecologico-geographical features and productivity. Nauka, Leningrdad (in Russian)

    Google Scholar 

  • Pautler BG, Simpson AJ, Mcnally DJ, Lamoureux SF, Simpson MJ (2010) Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol 44 (11):4076–4082

    Article  CAS  PubMed  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Kirpotin SN, Kulizhsky SP, Vorobiev SN (2013) Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone. Biogeosciences 10:5349–5365

    Article  Google Scholar 

  • Pokrovsky OS, Manasypov RM, Loiko SV, Shirokova LS (2016) Organic and organo-mineral colloids of discontinuous permafrost zone. Geochim Cosmochim Acta 188:1–20

    Article  CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilization profiles—a critique. FEMS Microbiol Ecol 42:1–14

    CAS  PubMed  Google Scholar 

  • Reyes FR, Lougheed VL (2015) Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arctic Ant Alp Res 47(1):35–48

    Article  Google Scholar 

  • Rezanezhad F, Price JS, Quinton WL, Lennartz B, Milojevic T, Van Cappellen P (2016) Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem Geol 429:75–84

    Article  CAS  Google Scholar 

  • Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193

    Article  Google Scholar 

  • Rivkina E, Laurinavichuis K, McGrath J, Tiedje JM, Shcherbakova V, Gilichinsky DA (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • San Miguel C, Dulinski M, Tate III RL (2007) Direct comparison of individual substrate utilization from a CLPP study: a new analysis for metabolic diversity data. Soil Biol Biochem 39:1870–1877

    Article  CAS  Google Scholar 

  • Santruckova H, Bird MI, Kalaschnikov YN, Grund M, Elhottova D, Simek M, Grigoryev S, Gleixner G, Arneth A, Schulze ED, Lloyd J (2003) Microbial characteristics of soils on a latitudinal transect in Siberia. Glob Change Biol 9:1106–1117

    Article  Google Scholar 

  • Schnecker J, Wild B, Hofhansl F, Eloy Alves RJ, Barta J et al (2014) Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS One 9(4):e94076. doi:10.1371/journal.pone.0094076

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnecker J, Wild B, Takriti M, Alves RJE, Gentsch N, Gittel A (2015) Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia. Soil Biol Biochem 83:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, Jr GE, Ducklow H (2000) Changes in bacterioplankton metabolic capabilities along a salinity gradient in the York River estuary, Virginia, USA. Aquat Microbial Ecol 22:163–174

    Article  Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559

    Article  CAS  PubMed  Google Scholar 

  • Seo EY, Ahn TS, Zo YG (2010) Agreement, precision, and accuracy of epifluorescence microscopy methods for enumeration of total bacterial numbers. Appl Environ Microbiol 76(6):1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16 S rDNA sequencing. Microb Ecol 33:169–179

    Article  CAS  PubMed  Google Scholar 

  • Shirokova LS, Pokrovsky OS, Kirpotin SN, Desmukh C, Pokrovsky BG, Audry S, Viers J (2013) Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry 113:573–593

    Article  CAS  Google Scholar 

  • Stepanova VM, Pokrovsky OS, Viers J, Mironycheva-Tokareva NP, Kosykh NP, Vishnyakova EK (2015) Major and trace elements in peat profiles in Western Siberia: impact of the landscape context, latitude and permafrost coverage. Appl Geochem 53:53–70

    Article  CAS  Google Scholar 

  • Steven B, Léveillé R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:388–3403

    Article  Google Scholar 

  • Tiquia SM (2010) Metabolic diversity of the heterotrophic microorganism and potential link to pollution of the Rouge River. Environ Pollut 158:1435–1443

    Article  CAS  PubMed  Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:379–392

    Article  Google Scholar 

  • Tyrtikov AP (1973) Thawing of soils in tundra of western Siberia. In: Popov AI (ed) Natural environment of western Siberia, Issue 3. Moscow State University Publishing House, Moscow, pp 160–169 (in Russian)

  • Tyrtikov AP (1979) Dynamics of vegetation coverage and permafrost development in western Siberia. Nauka, Moscow (in Russian)

    Google Scholar 

  • Vardy SR, Warner BG, Turunen J, Aravena R (2000) Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. Holocene 10:273–280

    Article  Google Scholar 

  • Vasil’evskaya VD, Ivanov VV, Bogatyrev LG (1986) Soils of North of western Siberia. Moscow University Publ House, Moscow (in Russian)

    Google Scholar 

  • Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC (2011) West Siberian Plain as a late glacial desert. Quatern Int 237(1–2): 45–53

    Article  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvii A et al (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Vorobyova E, Minkovsky N, Mamukelashvili A, Zvyagintsev D, Soina V, Polanskaya L, Gilichinsky DA (2001) Microorganisms and biomarkers in permafrost. In: Paepe R, Melnikov VP (eds) Permafrost response on economic development, environmental security and natural resources Kluwer Acedemic Publishers, Dordrecht, pp 527–541

    Chapter  Google Scholar 

  • Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Song C, Miao Y, Meng H (2013) Greenhouse gas emissions from southward transplanted wetlands during freezing–thawing periods in northeast China. Wetlands 33(6):1075–1081

    Article  CAS  Google Scholar 

  • Weintraub MN, Schimmel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils. Ecosystems 6:129–143

    Article  CAS  Google Scholar 

  • White C, Tardif JC, Adkins A, Staniforth R (2005) Functional diversity of microbial communities in the mixed boreal plain forest of central Canada. Soil Biol Biochem 37(7):1359–1372

    Article  CAS  Google Scholar 

  • Wild B, Schnecker J, Alves RJE, Barsukov P, Barta J et al (2014) Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol Biochem 75:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57:303–315

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007a) Size and structure of bacterial, fungal and nematode communities along an Antarctic environment gradient. FEMS Microbiol Ecol 59:436–451

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007b) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007c) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Dejean S, DeSantis TZ, Goncalves O et al (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. The ISME J 4:1206–1214. doi:10.1038/ismej.2010.41

    Article  CAS  PubMed  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochim 26(9):1101–1108

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the BIO-GEO-CLIM Grant No. 14.B25.31.001 (sampling, analysis), RNF (RSCF) Grant No. 15-17-10009 (analyses, interpretation, 30%), GDRI CAR-WET-SIB, and Tomsk State University Academic D.I. Mendeleev Fund Program (Grant No. 8.2.57.2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Pokrovsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 354 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgalev, Y.N., Lushchaeva, I.V., Morgaleva, T.G. et al. Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia. Polar Biol 40, 1645–1659 (2017). https://doi.org/10.1007/s00300-017-2088-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2088-1

Keywords

Navigation