Skip to main content

Advertisement

Log in

Impact of early food input on the Arctic benthos activities during the polar night

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In Arctic areas where benthic primary production does not occur or is not sufficient, the benthos depends on episodic events of food inputs from overlying waters, in particular spring ice algal and phytoplankton blooms. Climate change is expected to lead to earlier ice melts and subsequently to earlier spring blooms and food inputs to the benthos. The goal of the present study was to characterize benthic community structure and activities during the polar night in Rijpfjorden, a high Arctic fjord from Svalbard, and to assess experimentally how earlier climate-induced food inputs can impact these benthic activities. Two concentrations of freeze-dried phytoplankton were added to intact sediment cores, while additional control cores did not receive food addition. Sediment oxygen demand (SOD), nutrient fluxes, bioturbation coefficients (as indicator of benthic activities) and contents of organic matter and pigments in sediments were measured at the beginning of the experiment and 9 days after the addition. In the initial polar night conditions, SOD was ~4.2 mmol O2 m−2 d−1, bioturbation coefficients were null for biodiffusion and 1.08 y−1 for bioadvection, and benthic biomass was 1.36 g 0.1 m−2. In the cores with food addition, the phytoplankton added was quickly consumed, and after 9 days, SOD and bioturbation were higher in the food treatments compared with the control cores, both being higher with higher food concentration. This study documented a clear and quick response in benthic activities following the food input, suggesting that in winter/early spring, Arctic benthos may depend on early food inputs for its activities. Climate-induced changes in food supply to the seafloor could have drastic consequences for the benthic ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345

    Article  CAS  Google Scholar 

  • Ambrose WG, Renaud PE (1995) Benthic response to water column productivity patterns—evidence for benthic-pelagic coupling in the northeast water polynya. J Geophys Res Ocean 100 (C3):4411–4421

    Google Scholar 

  • Ambrose WG Jr, Carroll ML, Greenacre M, Thorrold SR, McMahon KW (2006) Variation in Serripes groenlandicus (Bivalvia) growth in a Norwegian high-Arctic fjord: evidence for local- and large-scale climatic forcing. Glob Change Biol 12:1595–1607

    Article  Google Scholar 

  • Aminot A, Kérouel R (2007a) Ammonium: dosage fluorimétrique par SFA. In: Quae (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 114–122

  • Aminot A, Kérouel R (2007b) Nitrates: dosage colorimétrique par SFA. In: QUAE (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 77–85

  • Aminot A, Kérouel R (2007c) Phospates: dosage colorimétrique par SFA. In: Quae (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 123–131

  • Aminot A, Kérouel R (2007d) Silicates: dosage colorimétrique par SFA. In: Quae (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 132–139

  • Arrigo KR, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res Oceans 116 (C09011)

  • Bauerfeind A, Garrity C, Krumbholz M, Ramseier RO, Vob M (1997) Seasonal variability of sediment trap collections in the Northeast Water Polynya. Part 2. Biochemical and microscopic composition of sedimenting matter. J Mar Syst 10:371–389

    Article  Google Scholar 

  • Bender K, Davis WR (1984) The effect of feeding by Yoldia limatula on bioturbation. Ophelia 23:91–100

    Article  Google Scholar 

  • Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorentzen D, Brierley AS (2008) Diel vertical migration of Arctic zooplankton during the polar night. Biology Lett 5:69–72

    Google Scholar 

  • Carroll ML, Ambrose WGJ (2012) Benthic infaunal community variability on the Northern Svalbard Shelf. Polar Biol 35:1259–1272

    Article  Google Scholar 

  • Carroll ML, Carroll J (2003) The Arctic Seas. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell Publishing, Oxford, pp 126–156

    Google Scholar 

  • Christensen B, Vedel A, Kristensen A (2000) Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding Nereis diversicolor and non suspension-feeding Nereis virens polychaetes. Mar Ecol Prog Ser 192:203–217

    Article  Google Scholar 

  • Clough LM, Ambrose WG, Cochran JK, Barnes C, Renaud PE, Aller RC (1997) Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean. Deep-Sea Res II 44(8):1683–1704

    Article  CAS  Google Scholar 

  • Clough LM, Renaud P, Ambrose WG (2005) Impact of water depth, sediment pigment concentration, and benthic macrofauna biomass on sediment oxygen demand in the Western Arctic Ocean. Can J Fish Aquat Sci 62:1756–1765

    Article  CAS  Google Scholar 

  • Comiso JC (2003) Warming trends in the Arctic from clear sky satellite observations. J Clim 16(3):498–510

    Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703

    Article  Google Scholar 

  • D’Andrea AF, Lopez GR, Aller RC (2004) Rapid physical and biological particle mixing on an intertidal sandflat. J Mar Res 62:67–92

    Article  Google Scholar 

  • de Goeij P, Luttikhuizen P (1998) Deep-burying reduces growth in intertidal bivalves: field and mesocosm experiments with Macoma balthica. J Exp Mar Biol Ecol 228:327–337

    Article  Google Scholar 

  • Duchene JC, Rosenberg R (2001) Marine benthic faunal activity on a sediment surface assessed by video numerical tracking. Mar Ecol Prog Ser 223:113–119

    Article  Google Scholar 

  • Dunton KH, Goodall JL, Schonberg SV, Grebmeier JM, Maidment DR (2005) Multi-decadal synthesis of benthic-pelagic coupling in the western arctic: role of cross-shelf advective processes. Deep-Sea Res II 52(24–26):3462–3477

    Article  Google Scholar 

  • Duport E, Gilbert F, Poggiale J-C, Dedieu K, Rabouille C, Stora G (2007) Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar Coast Shelf Sci 72:522–533

    Article  Google Scholar 

  • Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev 17:193–284

    Google Scholar 

  • Feder HM, Matheke GEM (1980) Subtidal benthos. In: Colonell JW (ed) Port Valdez, Alaska: environmental studies 1976–1979. University of Alaska, Fairbanks, AK, pp 235–324

    Google Scholar 

  • Forest A, Sampei M, Hattori H, Makabe R, Sasaki H, Fukuchi M, Wassmann P, Fortier L (2007) Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): physical and biological forcing of shelf-basin exchanges. J Mar Syst 68:39–54

    Article  Google Scholar 

  • Forest A, Sampei M, Makabe R, Sasaki H, Barber DG, Gratton Y, Wassmann P, Fortier L (2008) The annual cycle of particulate organic carbon export in Franklin Bay (Canadian Arctic): environmental control and food web implications. J Geophys Res Ocean 113:C03S05

    Google Scholar 

  • Forest A, Bélanger S, Sampei M, Sasaki H, Catherine L, Fortier L (2010) Three-year assessment of particulate organic carbon fluxes in Amundsen Gulf (Beaufort Sea): satellite observations and sediment trap measurements. Deep-Sea Res I 57:125–142

    Article  CAS  Google Scholar 

  • François F, Gérino M, Stora G, Durbec J-P, Poggiale J-C (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229:127–136

    Article  Google Scholar 

  • Gihring TM, Lavik G, Kuypers MMM, Kostka JE (2010) Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway). Limnol Oceanogr 55(2):740–752

    Article  CAS  Google Scholar 

  • Gilbert F, Aller RC, Hulth S (2003) The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: an experimental simulation and model approach. J Mar Res 61:101–125

    Article  CAS  Google Scholar 

  • Gilbert F, Hulth S, Grossi V, Poggiale J-C, Desrosiers G, Rosenberg R, Gérino M, François-Carcaillet F, Michaud E, Stora G (2007) Sediment reworking activity rates and patterns in some marine benthic species from the Gullmar Fjord (Western Sweden). Importance of faunal biovolume. J Exp Mar Biol Ecol 348:133–144

    Article  Google Scholar 

  • Glud RN, Holby O, Hoffmann F, Canfield DE (1998) Benthic mineralization and exchange in Arctic sediment (Svalbard, Norway). Mar Ecol Prog Ser 173:237–251

    Article  CAS  Google Scholar 

  • Glud RN, Risgaard-Petersen N, Thamdrup B, Fossing H, Rysgaard S (2000) Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland). Mar Ecol Prog Ser 206:59–71

    Article  Google Scholar 

  • Gooday AJ (2002) Organic matter to the Ocean floor: a review. J Oceanogr 58:305–332

    Article  CAS  Google Scholar 

  • Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190

    Google Scholar 

  • Grant J, Hargrave B, MacPherson P (2002) Sediment properties and benthic-pelagic coupling in the North Water. Deep-Sea Res II 49:5259–5275

    Article  CAS  Google Scholar 

  • Grebmeier JM (2012) Shifting Patterns of Life in the Pacific Arctic and Sub-Arctic Seas. Ann Rev Mar Sci 4:63–78

    Article  PubMed  Google Scholar 

  • Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic-benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:295–518

    Article  Google Scholar 

  • Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57

    Article  Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006a) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Article  Google Scholar 

  • Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006b) A major ecosystem shift in the Northern Bering Sea. Science 311:1461

    Article  CAS  PubMed  Google Scholar 

  • Hall POJ, Hulth S, Hulthe G, Landen A, Tenberg A (1996) Benthic nutrient fluxes on a Basin-Wide scale in the Skagerrak (North-Eastern North Sea). J Sea Res 35(1–3):123–137

    CAS  Google Scholar 

  • Hansen JLS, Josefson AB (2004) Ingestion by deposit-feeding macro-zoobenthos in the aphotic zone does not affect the pool of live pelagic diatoms in the sediment. J Exp Mar Biol Ecol 308:59–84

    Article  Google Scholar 

  • Holm-Hansen O, Lorenzen CJ, Holms RW, Strickland JD (1965) Fluorometric determination of chlorophyll. J Conseil Int pour l’Exploration de la Mer 30:3–15

    Article  CAS  Google Scholar 

  • Hulth S (1994) Arctic sediments (Svalbard): consumption and microdistribution of oxygen. Mar Chem 46(3):293–316

    Article  CAS  Google Scholar 

  • Jorgensen BB, Glud RN, Holby O (2005) Oxygen distribution and bioirrigation in Arctic fjord sediments (svalbard, Barents Sea). Mar Ecol Prog Ser 292:85–95

    Article  CAS  Google Scholar 

  • Juul-Pedersen T, Michel C, Gosselin M, Seuthe L (2008) Seasonal changes in the sinking export of particular material, under first-year sea ice on the Mackenzie Shelf (western Canadian Arctic). Mar Ecol Prog Ser 353:13–25

    Article  Google Scholar 

  • Kahru M, Brotas W, Manzano-Sarabia M, Mitchel BG (2011) Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol 17:1722–1739

    Article  Google Scholar 

  • Kedra M, Kulinski K, Walkusz W, Legezyska J (2012) The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment. Estuar Coast Shelf Sci 114:183–191

    Article  Google Scholar 

  • Kennedy P, Kennedy H, Papadimitriou S (2005) The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun Mass Spectrom 19(8):1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Klages M, Boetius A, Christensen JP, Deubel H, Piepenburg D, Schewe I, Soltwedel T (2004) The Benthos of the Arctic seas and its Role for the Organic Carbon Cycle at the Seafloor. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 139–167

  • Konovalov D, Renaud PE, Berge J, Voronkov AY, Cochrane SKJ (2010) Contaminants, benthic communities and bioturbation : potential for PAH mobilisation in Arctic sediments. Chem Ecol 26(3):197–208

    Article  CAS  Google Scholar 

  • Kostka JE, Thamdrup B, Glud RN, Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21

    Google Scholar 

  • Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICES at records: 1958-2008. Geophys Res Lett 36:L15501

    Article  Google Scholar 

  • Lepore K, Moran SB, Grebmeier JM, Cooper LW, Lalande C, Maslowski W, Hill V, Bates NR, Hansell DA, Mathis JT, Kelly RP (2007) Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi Sea. J Geophys Res Ocean 112:C10. doi:10.1029/2006jc003555

    Google Scholar 

  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity and quality. Prog Oceanogr 90(1–4):18–32

    Article  Google Scholar 

  • Link H, Archambault P, Tamelander T, Renaud PE, Piepenburg D (2011) Spring-to-summer changes and regional variability of benthic processes in the western Canadian Arctic. Polar Biol 34:2025–2038

    Article  Google Scholar 

  • Mahaut ML, Graf G (1987) A luminophores tracer technique for bioturbation studies. Oceanol Acta 10(3):323–328

    Google Scholar 

  • Maire O, Duchêne JC, Gremare A, Malyuga VS, Meysman FJR (2007) A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. J Exp Mar Biol Ecol 343:21–36

    Article  Google Scholar 

  • Manheim FT, Dwight L, Belastock RA (1974) Porosity, density, grain density, and related physical properties of sediments from the Red Sea Drill Cores. In: Whitmarsh RB, WOE, Ross DA (ed) initial reports of the deep-sea drilling project. US Government Printing Office, pp 887–907

  • McClintic M, DeMaster DJ, Thomas CJ, Smith CR (2008) Testing the FOODBANCS hypothesis: seasonal variations in near-bottom particle flux, bioturbation intensity, and deposit feeding based on 234Th measurements. Deep-Sea Res II 55:2425–2437

    Article  CAS  Google Scholar 

  • McMahon KW, Ambrose WG Jr, Johnson BJ, Sun M-Y, Lopez GR, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar Ecol Prog Ser 310:1–14

    Article  Google Scholar 

  • Michaud E (2006) Rôle de la diversité fonctionnelle de la communauté à Macoma balthica (Estuaire du Saint-Laurent, Québec, Canada) sur les flux biogéochimiques à l’interface eau-sédiment et sur le mélange particulaire. PhD Thesis. Université du Québec à Rimouski et Université de la Méditerranée, Aix-Marseille II, 237p

  • Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2005) The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the M. balthica community on sediment oxygen uptake. J Exp Mar Biol Ecol 326:77–88

    Article  CAS  Google Scholar 

  • Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2006) The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J Exp Mar Biol Ecol 337:178–189

    Article  CAS  Google Scholar 

  • Michaud E, Desrosiers G, Aller RC, Mermillod-Blondin F, Sundby B, Stora G (2009) Spatial interactions in the Macoma balthica community control biogeochemical fluxes at the sediment-water interface and microbial abundances. J Mar Res 61(1):43–70

    Article  Google Scholar 

  • Michaud E, Aller RC, Stora G (2010) Sedimentary organic matter distributions and burrowing activity: natural patterns and experimental artifacts. Estuar Coast Shelf Sci 90:21–34

    Article  CAS  Google Scholar 

  • Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Mar Ecol Prog Ser 300:3–19

    Article  CAS  Google Scholar 

  • Morata N, Renaud PE (2008) Sedimentary pigments in the western Barents Sea: a reflection of the pelagic-benthic coupling? Deep-Sea Res II 55:2381–2389

    Article  CAS  Google Scholar 

  • Morata N, Renaud PE, Brugel S, Hobson KA, Johnson BJ (2008) Spatial and seasonal variations in the pelagic-benthic coupling of the southeastern Beaufort Sea revealed by sedimentary biomarkers. Mar Ecol Prog Ser 371:47–63

    Article  Google Scholar 

  • Morata N, Poulin M, Renaud PE (2011) A multiple biomarker approach to track the fate of an ice algal bloom. Polar Biol 34:101–112

    Article  Google Scholar 

  • Nogaro G, Charles F, de Mendonca JB, Mermillod-Blondin F, Stora G, Francois-Carcaillet F (2008) Food supply impacts sediment reworking by Nereis diversicolor. Hydrobiologia 598:403–408

    Article  Google Scholar 

  • Noji TT, Rey F, Miller LA, Borsheim KY, Urban-Rich J (1999) Fate of biogenic carbon in the upper 200 m of the central Greenland Sea. Deep-Sea Res II 46:1497–1509

    Article  CAS  Google Scholar 

  • Ouelette D, Desrosiers G, Gagne JP, Gilbert F, Poggiale JC, Blier P, Stora G (2004) Effects of temperature or in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar Ecol Prog Ser 266:185–193

    Article  Google Scholar 

  • Pawłowska J, Włodarska-Kowalczuk M, Zajączkowski M, Nygård H, Berge J (2011) Seasonal variability of meio- and macrobenthic standing stocks and diversity in an Arctic fjord (Adventfjorden, Spitsbergen). Polar Biol 34:833–845

    Article  Google Scholar 

  • Pearson TH (2001) Functional group ecology in the soft-sediment marine benthos: the role of bioturbation. Oceanogr Mar Biol A Rev 39:233–267

    Google Scholar 

  • Perrette M, Yool A, Quartly GD, Popova EE (2011) Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 8:515–524

    Article  Google Scholar 

  • Pfannkuche O, Thiel H (1987) Meiobenthic stocks and benthic activity on the NE-Svalbard shelf and in the Nansen Basin. Polar Biol 7(5):253–266

    Article  Google Scholar 

  • Piepenburg D, Blackburn TH, Vondorrien CF, Gutt J, Hall POJ, Hulth S, Kendall MA, Opalinski KW, Rachor E, Schmid MK (1995) Partitioning of benthic community respiration in the Arctic (Northwestern Barents Sea). Mar Ecol Prog Ser 118(1–3):199–213

    Article  Google Scholar 

  • Piepenburg D, Ambrose WG Jr, Brandt A, Renaud PE, Ahrens MJ, Jensen P (1997) Benthic community patterns reflect water column processes in the Northeast Water polynya (Greenland). J Mar Syst 10(1–4):467–482

    Article  Google Scholar 

  • Polyakov IV, Timokov LA, Alexeev VA, Bacon S, Dimitrenko IA, Fortier L, Frolov IE, Gascard J-C, Hansen E, Ivanov VV et al (2010) Arctic Ocean warming contributes to reduced Polar ice cap. J Phys Oceanogr 40(2):743–756

    Google Scholar 

  • Reigstad M, Riser CW, Wassmann P, Ratkova T (2008) Vertical export of particulate organic carbon: attenuation, composition and loss rates in the northern Barents Sea. Deep-Sea Res II 55(20–21):2308–2319

    Article  CAS  Google Scholar 

  • Renaud PE, Morata N, Ambrose WG Jr, Bowie JJ, Chiuchiolo A (2007a) Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf. J Exp Mar Biol Ecol 349:248–260

    Article  CAS  Google Scholar 

  • Renaud PE, Riedel A, Michel C, Morata N, Gosselin M, Juul-Pedersen T, Chiuchiolo A (2007b) Seasonal variation in benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic? J Mar Syst 67:1–12

    Article  Google Scholar 

  • Renaud PE, Morata N, Carroll ML, Denisenko SG, Reigstad M (2008) Pelagic-benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res II 55:2372–2380

    Article  CAS  Google Scholar 

  • Rowe GT, Sibuet M, Demings J, Khripounoff A, Tietjen J, Mcko S, Theroux R (1991) ‘Total’ sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar Ecol Prog Ser 79:99–114

    Article  Google Scholar 

  • Rowe GT, Borland GS, Escobar Briones EG, Cruz-Kaegi ME, Newton A, Piepenburg D, Walsh I, Deming J (1997) Sediment community biomass and respiration in the Northeast Water Polynya, Greenland: a numerical simulation of benthic lander and spade corer data. J Mar Syst 10:497–515

    Article  Google Scholar 

  • Rysgaard S, Thamdrup B, Risgaard-Petersen N, Fossing H, Berg P, Christensen JP, Dalsgaard T (1998) Seasonal carbon and nutrient mineralization in a high Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175:261–276

    Article  CAS  Google Scholar 

  • Rysgaard S, Christensen PB, Sorensen MV, Funch P, Berg P (2000) Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland. Aquat Microb Ecol 21:59–71

    Article  Google Scholar 

  • Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr 49(5):1493–1502

    Article  CAS  Google Scholar 

  • Schlitzer R (2012) Ocean data view. http://odv.awi.de

  • Shick J-M (1976) Physiological and behavioral responses to hypoxia and hydrogen sulfide in the infaunal asteroid Ctenodiscus crispatus. Mar Biol 37:279–289

    Article  CAS  Google Scholar 

  • Smith KL Jr (1978) Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 m. Mar Biol 47:337–347

    Article  CAS  Google Scholar 

  • Smith JN, Schafer CT (1984) Bioturbation processes in continental slope and rise sediments delineated by Pb210, microfossil and textural indicators. J Mar Res 42:1117–1145

    Article  CAS  Google Scholar 

  • Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res II 55:2225–2244

    Google Scholar 

  • Stead RA, Thompson RJ (2006) The influence of an intermittent food supply on the feeding behaviour of Yoldia hyperborea (Bivalvia: Nuculanidae). J Exp Mar Biol Ecol 332:37–48

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1978) A practical handbook of seawater analysis, 2nd ed. Fish Res Bd Can Bull, p 311

  • Sun M-Y, Carroll ML, Ambrose WG Jr, Clough LM, Zou L, Lopez GR (2007) Rapid consumption of phytoplankton and ice algae by Arctic soft-sediment benthic communities: evidence using natural and 13C-labeled food materials. J Mar Res 65:561–588

    Article  CAS  Google Scholar 

  • Teal LR, Bulling MT, Parker ER, Solan M (2008) Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology 2:207–218

    Article  Google Scholar 

  • Turley C (2000) Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol Ecol 33:89–99

    CAS  PubMed  Google Scholar 

  • Vardaro MF, Ruhl HA, Smith KLJ (2009) Climate variation, carbon flux, and bioturbation in the abyssal North Pacific. Limnol Oceanogr 54:2081–2088

    Article  Google Scholar 

  • Wang C, Shi L, Gerland S, Granskog MA, Renner AHH, Li Z, Hansen E, Martma T (2013) Spring sea-ice evolution in Rijpfjorden (80°N), Svalbard, from in situ measurements and ice mass-balance buoy (IMB) data. Ann Glaciol 54(62):253–260

    Article  Google Scholar 

  • Wassmann P (2011) Arctic marine ecosystems in an era of rapid climate change. Prog Oceanogr 90:1–17

    Article  Google Scholar 

  • Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24(3):220–231

    Article  Google Scholar 

  • Wassmann P, Andreassen I, Reigstad M, Slagstad D (1996) Pelagic-benthic coupling in the Nordic Seas: the role of episodic events. Mar Ecol-P S Z N I 17(1–3):447–471

    Article  CAS  Google Scholar 

  • Werner I, Auel H (2005) Seasonal variability in abundance, respiration and lipid composition of Arctic under-ice amphipods. Mar Ecol Prog Ser 292:251–262

    Google Scholar 

  • Włodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fiord. Mar Ecol Prog Ser 303:31–41

    Article  Google Scholar 

  • Włodarska-Kowalczuk M, Renaud PE, Węsławski JM, Cochrane SKJ, Denisenko SG (2012) Species diversity, functional complexity and rarity in arctic fjordic versus open shelf benthic system. Mar Ecol Prog Ser 463:73–87

    Article  Google Scholar 

  • Zaborska A, Pempkowiak J, Papucci C (2006) Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden, Svalbard). Ann Environ Protect 8:79–96

    Google Scholar 

  • Zajączkowski M, Nygård H, Hegseth EN, Berge J (2010) Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007. Polar Biol 33:223–239

    Article  Google Scholar 

Download references

Acknowledgments

The authors especially want to thank the chief scientist, S. Falk-Petersen, the co-chief scientist, E. Halvorsen and the crew of the R/V Helmer Hanssen. Thank you to R. Corvaisier, P. Lamy, M. Legoff and A. Masson-Stroesser for their help during nutrient, carbon, pigment and luminophore analyses, and to E. Bailey for advice on the experimental design. This study was made possible by funding from the “Agence Nationale de Recherche” (11 PDOC 018 01 to NM), the “Labex Mer” (ICAR to NM), the “Centre National de la Recherche Scientifique” and the University of Tromsø (the polar night cruise to SFP). MWK was supported by the Institute of Oceanology Polish Academy of Sciences. This work is a contribution to the ANR-ECOTAB and ICAR projects, the Polar Night Cruise project and to the Arctos Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Morata.

Additional information

This article belongs to the special Polar Night issue, coordinated by Ole Jørgen Lønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morata, N., Michaud, E. & Włodarska-Kowalczuk, M. Impact of early food input on the Arctic benthos activities during the polar night. Polar Biol 38, 99–114 (2015). https://doi.org/10.1007/s00300-013-1414-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1414-5

Keywords

Navigation