Skip to main content

Advertisement

Log in

Benthic Microalgal Community Structure, Primary Productivity, and Fiddler Crab (Leptuca pugilator) Grazing in an Estuarine Salt Panne

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Salt pannes are marsh features in the supratidal zone that are devoid of macrophytic vegetation. Although these habitats appear barren, benthic microalgae (BMA) inhabit the sediments and are potentially important primary producers. In addition, salt pannes are habitats for dense accumulations of sand fiddler crabs (Leptuca pugilator; Bosc 1802). The purpose of this study was to determine the temporal changes in BMA biomass, community composition, and net primary productivity (NPP) for a supratidal salt panne and quantify sand fiddler crab grazing on BMA. The impact of crab grazing on BMA abundance in surface sediments was determined by measuring chl a concentrations in ungrazed and grazed sediments. BMA biomass peaked to a high of 16 µg chl a g sediment−1 in June and July, suggesting growth in the spring followed by a small decline in the warmer summer months. The BMA community was primarily composed of benthic diatoms, with lesser amounts of cyanobacteria. NPP increased to a median of 0.51 mmol O2 m−2 h−1 (6.12 mg C m−2 h−1) in July. In comparison with other BMA habitats in this estuary, NPP and biomass for salt pannes was lower than the other 5 habitat types (tall and short Spartina, intertidal mud and sandflats, phytoplankton, and submerged sediments). Sand fiddler crabs do not appear to consume significant amounts of BMA during grazing in salt pannes. This first ever study of BMA NPP demonstrates that estuarine salt pannes are likely a small contributor to ecosystem NPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data for this study are available from the author upon request.

References

  • Admiraal, W. 1984. The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research 3: 269–322.

    Google Scholar 

  • Allen, D., W. Allen, R. Feller, and J. Plunket. 2014. Site profile of the North Inlet – Winyah Bay National Estuarine Research Reserve. North Inlet – Winyah Bay National Estuarine Research Reserve. Georgetown, S.C. 432 pgs.

  • Ask, J., O. Rowe, S. Brugel, M. Strömgren, P. Byström, and A. Anderson. 2016. Importance of coastal primary production in the northern Baltic Sea. Ambio 45: 635–648.

    Article  CAS  Google Scholar 

  • Beheshti, K., C. Endris, P. Goodwin, A. Pavlak, and K. Wasson. 2022. Burrowing crabs and physical factors hasten marsh recovery at panne edges. PLoS ONE 17: e0249330.

    Article  CAS  Google Scholar 

  • Berg, P., N. Risgaard-Petersen, and S. Rysgaard. 1998. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography 43: 1500–1510.

    Article  CAS  Google Scholar 

  • Bosc, L.A.G. 1802. Histoire naturelle des Coquilles, contenant leur description, les mœurs des animaux qui les habitent et leurs usages. Paris: Chez Deterville: de l'Imprimerie de Crapelet. Volume 1; Volume 2; Volume 3; Volume 4; Volume 5.

  • Boston, K. 1983. The development of salt pans on tidal marshes, with particular reference to south-eastern Australia. Journal of Biogeography 10: 1–10.

    Article  Google Scholar 

  • Cahoon, L. 1999. The role of benthic microalgae in neritic ecosystems. Oceanography and Marine Biology Annual Review 37: 47–86.

    Google Scholar 

  • Dunn, R., T. Buck, J. Krask, J. Stevens, and E. Smith. 2023. Elevation influences salt marsh crab abundance, diversity, and burrowing. Marine Ecology Progress Series 704: 55–66.

    Article  Google Scholar 

  • Dye, A., and T. Lasiak. 1986. Microbenthos, meiobenthos and fiddler crabs: Trophic interactions in a tropical mangrove sediment. Marine Ecology Progress Series 32: 259–264.

    Article  Google Scholar 

  • Gerbersdorf, S., J. Meyercordt, and L. Meyer-Reil. 2005. Microphytobenthic primary production in the Bodden estuaries, southern Baltic Sea, at two study sites differing in trophic status. Aquatic Microbial Ecology 41: 181–198.

    Article  Google Scholar 

  • Grant, J. 1986. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Marine Biology 90: 299–306.

    Article  Google Scholar 

  • Goudie, A. 2013. Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth. Estuarine, Coastal and Shelf Science 129: 112–123.

    Article  Google Scholar 

  • Higgins H., S. Wright, and L. Schlüter. 2011. Quantitative interpretation of chemotaxonomic pigment data. In Roy S., Llewellyn C.A., Egeland E.S., Johnsen G. (eds) Phytoplankton pigments. Cambridge University Press, NY.

  • Hoffman, B., and C. Dawes. 1997. Vegetational and abiotic analysis of salterns of mangals and salt marshes of the west coast of Florida. Journal of Coastal Research 13: 147–154.

    Google Scholar 

  • Hoffman, J., J. Katz, and M. Bertness. 1984. Fiddler crab deposit-feeding and meiofaunal abundance in salt marsh habitats. Journal of Experimental Marine Biology and Ecology 82: 161–174.

    Article  Google Scholar 

  • Holland, A., R. Zingmark, and J. Dean. 1974. Quantitative evidence concerning the stabilisation of sediment by benthic diatoms. Marine Biology 27: 191–196.

    Article  Google Scholar 

  • Hope, J., D. Paterson, and S. Thrush. 2020. The role of microphytobenthos in soft sediment ecological networks and their contribution to the delivery of multiple ecosystem services. Journal of Ecology 108: 815–830.

    Article  Google Scholar 

  • Höpner, T., and K. Wonneberger. 1985. Examination of the connection between the patchiness of benthic nutrient efflux and epiphytobenthos patchiness on intertidal flats. Netherlands Journal of Sea Research 19: 277–285.

    Article  Google Scholar 

  • Johnson, D., K. Martinez-Soto, M. Pant, S. Wittyngham, and E. Goetz. 2020. The fiddler crab Minuca pugnax (Smith, 1870)(Decapoda: Brachyura: Ocypodidae) reduces saltmarsh algae in its expanded range. Journal of Crustacean Biology 40: 668–672.

    Article  Google Scholar 

  • Lewitus, A., D. White, R. Tymowski, M. Geesey, S. Hymel, and P. Noble. 2005. Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in Southeastern U.S. estuaries. Estuaries 28: 160–172.

    Article  CAS  Google Scholar 

  • Li, H., C. Wang, J. Ellis, Y. Cui, G. Miller, and J. Morris. 2020. Identifying marsh dieback events from Landsat image series (1998–2018) with an Autoencoder in the NIWB estuary, South Carolina. International Journal of Digital Earth. 13: 1467–1483.

    Article  Google Scholar 

  • Linhoss, A., and W. Underwood. 2016. Modeling salt panne land-cover suitability under sea-level rise. Journal of Coastal Research 32: 1116–1125.

    Article  Google Scholar 

  • MacIntyre, H., R. Geider, and D. Miller. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated shallow-water habitats. I. Distribution, abundance, and primary production. Estuaries 19: 186–201.

    Article  Google Scholar 

  • Madsen, K., P. Nilsson, and K. Sundbäck. 1993. The influence of benthic microalgae on the stability of subtidal sediment. Journal of Experimental Marine Biology and Ecology 170: 159–177.

    Article  Google Scholar 

  • Mariotti, G., and S. Fagherazzi. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences. 110: 5353–5356.

    Article  CAS  Google Scholar 

  • Miller, D. 1961. The feeding mechanism of fiddler crabs, with ecological considerations of feeding adaptations. Zoologica 46: 89–100.

    Google Scholar 

  • Miller, W., and F. Egler. 1950. Vegetation of the Wequetequock-Pawcatuck tidal-marshes, Connecticut. Ecological Monographs 20: 143–172.

    Article  Google Scholar 

  • Miller, D., R. Geider, and H. MacIntyre. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.

    Article  Google Scholar 

  • Millette, T., B. Argow, E. Marcano, C. Hayward, C. Hopkinson, and V. Valentine. 2010. Salt marsh geomorphological analyses via integration of multitemporal multispectral remote sensing with LIDAR and GIS. Journal of Coastal Research 26: 809–816.

    Article  Google Scholar 

  • Montague, C. 1980. A natural history of temperate Western Atlantic fiddler crabs (genus Uca) with reference to their impact on the salt marsh. Contributions in Marine Science 23: 25–55.

    CAS  Google Scholar 

  • Paerl, H., J. Pinckney, and T. Steppe. 2000. Cyanobacterial-bacterial consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology 2: 11–26.

    Article  CAS  Google Scholar 

  • Paerl, H.W. and J. Huisman. 2008. Blooms like it hot. Science 320: 57–58.

  • Paterson, D. 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnology and Oceanography 34: 223–234.

    Article  Google Scholar 

  • Pethick, J. 1974. The distribution of salt pans on tidal salt marshes. Journal of Biogeography 1: 57–62.

    Article  Google Scholar 

  • Peterson, B., and R. Howarth. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32: 1195–1213.

    Article  CAS  Google Scholar 

  • Pinckney, J., and R. Zingmark. 1993a. Modelling the annual production of intertidal benthic microalgae in estuarine ecosystems. Journal of Phycology 29: 396–407.

    Article  Google Scholar 

  • Pinckney, J., and R. Zingmark. 1993b. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16: 887–897.

    Article  CAS  Google Scholar 

  • Pinckney, J., and R. Zingmark. 1993c. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: Methodological considerations. Limnology and Oceanography 38: 1373–1383.

    Article  Google Scholar 

  • Pinckney, J., D. Millie, K. Howe, H. Paerl, and J. Hurley. 1996. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. Journal of Plankton Research 18: 1867–1880.

    Article  CAS  Google Scholar 

  • Pinckney, J., T. Richardson, D. Millie, and H. Paerl. 2001. Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochemistry 32: 585–595.

    Article  CAS  Google Scholar 

  • Pinckney, J., K. Carman, S. Lumsden, and S. Hymel. 2003. Microalgal - meiofaunal trophic relationships in muddy, intertidal estuarine sediments. Aquatic Microbial Ecology 31: 99–108.

    Article  Google Scholar 

  • Pomeroy, L. 1959. Algal productivity in salt marshes of Georgia. Limnology and Oceanography 4: 386–397.

    Article  Google Scholar 

  • Redfield, A. 1972. Development of a New England Salt Marsh. Ecological Monographs 42: 201–237.

    Article  Google Scholar 

  • Ribeiro, P., and O. Iribarne. 2011. Coupling between microphytobenthic biomass and fiddler crab feeding. Journal of Experimental Marine Biology and Ecology 407: 147–154.

    Article  Google Scholar 

  • Ridd, P., R. Sam, S. Hollins, and G. Brunskill. 1997. Water, salt and nutrient fluxes of tropical tidal salt flats. Mangroves and Salt Marshes 1: 229–238.

    Article  Google Scholar 

  • Rizzo, W. 1990. Nutrient exchanges between the water column and a subtidal benthic microalgal community. Estuaries 13: 219–226.

    Article  CAS  Google Scholar 

  • Robertson, J., and S. Newell. 1982a. Experimental studies of particle ingestion by the sand fiddler crab Uca pugilator (Bosc). Journal of Experimental Marine Biology and Ecology 59: 1–21.

    Article  Google Scholar 

  • Robertson, J., and S. Newell. 1982b. A study of particle ingestion by three fiddler crab species foraging on sandy sediments. Journal of Experimental Marine Biology and Ecology 65: 11–17.

    Article  Google Scholar 

  • Roy, S., C. Llewellyn, E. Egeland, and G. Johnsen, eds. 2011. Phytoplankton pigments. NY: Cambridge Univ. Press.

    Google Scholar 

  • Schreiber, R., and J. Pennock. 1995. The relative contribution of benthic microalgae to total microalgal production in a shallow sub-tidal estuarine environment. Ophelia 42: 335–352.

    Article  Google Scholar 

  • Serôdio, J., D. Paterson, V. Méléder, and W. Vyvermen. 2020. Editorial: advances and challenges in microphytobenthos research: from cell biology to coastal ecosystem function. Frontiers in Marine Science 7. https://doi.org/10.3389/fmars.2020.608729.

  • Sullivan, M. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 11: 384–390.

    Google Scholar 

  • Sullivan, M., and C. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food webs: Evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62: 149–159.

    Article  Google Scholar 

  • Underwood, G., and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93–153.

    Article  CAS  Google Scholar 

  • Ward, M., T. Hill, C. Souza, T. Filipczyk, A. Ricart, S. Merolla, L. Capece, B. O’Donnell, K. Elsmore, W. Oechel, and K. Beheshti. 2021. Blue carbon stocks and exchanges along the California coast. Biogeosciences 18: 4717–4732.

    Article  CAS  Google Scholar 

  • Wilson, K., J. Kelley, A. Croitoru, M. Dionne, D. Belknap, and R. Steneck. 2009. Stratigraphic and ecophysical characterizations of salt pools: Dynamic landforms of the Webhannet Salt Marsh, Wells, ME, USA. Estuaries and Coasts 32: 855–870.

    Article  Google Scholar 

  • Wilson, C., Z. Hughes, and D. FitzGerald. 2012. The effects of crab bioturbation on mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes. Estuarine Coastal and Shelf Science 106: 33–44.

    Article  CAS  Google Scholar 

  • Wilson, C., Z. Hughes, D. FitzGerald, C. Hopkinson, V. Valentine, and A. Kolker. 2014. Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes? Geomorphology 213: 99–115.

    Article  Google Scholar 

  • Wolfrath, B. 1992. Field experiments on feeding of European fiddler crab Uca tangeri. Marine Ecology Progress Series 90: 39–43.

    Article  Google Scholar 

  • Xie, T., A. Wang, S. Li, B. Cui, J. Bai, and D. Shao. 2022. Crab contributions as an ecosystem engineer to sediment turnover in the Yellow River Delta. Frontiers in Marine Science 9: 1019176.

    Article  Google Scholar 

  • Yapp, R., D. Johns, and O. Jones. 1917. The salt marshes of the Dovey Estuary. Journal of Ecology 5: 65–103.

    Article  Google Scholar 

Download references

Acknowledgements

I thank the many undergraduate and graduate student assistants that participated in all phases of the project: S. Bauman, C. Schlenker, S. Powers, M. Radek, H. Durbin, Jacob Pinckney, F. Melia, A. Rodriguez, A. Cain, K. Barnette, and H. Summey.

Funding

Partial funding for this project was supplied by the National Science Foundation (OCE 1736557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Pinckney.

Additional information

Communicated by Patricia Ramey-Balci

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinckney, J.L. Benthic Microalgal Community Structure, Primary Productivity, and Fiddler Crab (Leptuca pugilator) Grazing in an Estuarine Salt Panne. Estuaries and Coasts 46, 1316–1325 (2023). https://doi.org/10.1007/s12237-023-01208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01208-8

Keywords

Navigation