Skip to main content
Log in

Effects of Glucose Concentration on Ethanol Fermentation of White-Rot Fungus Phanerochaete sordida YK-624 Under Aerobic Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

White-rot fungi are microorganisms capable of ethanol fermentation; however, the specific conditions activating ethanol fermentation are unclear in contrast to fermentation by yeasts. In this study, we investigated the conditions favoring ethanol fermentation by the white-rot fungus Phanerochaete sordida YK-624, which is able to produce ethanol from woody material. In aerobic stationary cultivation with various concentrations of glucose (0.8–33 g/l), the fungus produced ethanol in media containing an initial glucose concentration of 2.8 g/l or higher. The amount of glucose consumption, mycelial weight, and ethanol production on the second day of culture increased in a concentration-dependent manner at low glucose concentrations; however, these were saturated at high concentrations. Biomass yields (growth/glucose consumption) were decreased until the initial glucose concentration increased to 6.0 g/l, after which the biomass yields showed constant values at higher concentrations (12–33 g/l). On the other hand, ethanol yields increased with decreasing biomass yields. In short shaking cultivation using mycelial suspension, trace amounts of instantaneous aerobic ethanol production were observed with 1.1 and 2.1 g/l glucose, but the relative gene expression levels of key enzymes at the pyruvate branch point showed no significant differences between ethanol production and non-production conditions. From these experimental results, it appears that the white-rot fungus P. sordida YK-624 produces ethanol due to overflow in sugar metabolism under aerobic conditions, although P. sordida YK-624 prioritizes glucose utilization for respiratory growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bjurhager I, Olsson AM, Zhang B, Gerber L, Kumar M, Berglund LA, Burgert I, Sundberg B, Salmén L (2010) Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromol 11:2359–2365. https://doi.org/10.1021/bm100487e

    Article  CAS  Google Scholar 

  2. Dashko S, Zhou N, Compagno C, Piškur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832. https://doi.org/10.1111/1567-1364.12161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diaz-Ruiz R, Rigoulet M, Devin A (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576. https://doi.org/10.1016/j.bbabio.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  4. Hagman A, Piškur J (2015) A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. PLoS ONE 10:e0116942. https://doi.org/10.1371/journal.pone.0116942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagman A, Säll T, Piškur J (2014) Analysis of the yeast short-term Crabtree effect and its origin. FEBS J 281:4805–4814. https://doi.org/10.1111/febs.13019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirai H, Kondo R, Sakai K (1994) Screening of lignin-degrading fungi and their ligninolytic enzyme activities during biological bleaching of kraft pulp. Mokuzai Gakkaishi 40:980–986

    CAS  Google Scholar 

  7. Horisawa S, Ando H, Ariga O, Sakuma Y (2015) Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresour Technol 197:37–41. https://doi.org/10.1016/j.biortech.2015.08.031

    Article  CAS  PubMed  Google Scholar 

  8. Kamei I, Hirota Y, Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141. https://doi.org/10.1016/j.biortech.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  9. Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R (2012) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112:137–142. https://doi.org/10.1016/j.biortech.2012.02.109

    Article  CAS  PubMed  Google Scholar 

  10. Mattila H, Kuuskeri J, Lundell T (2017) Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Bioresour Technol 225:254–261. https://doi.org/10.1016/j.biortech.2016.11.082

    Article  CAS  PubMed  Google Scholar 

  11. Mori T, Kako H, Sumiya T, Kawagishi H, Hirai H (2016) Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624. J Biotechnol 239:83–89. https://doi.org/10.1016/j.jbiotec.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  12. Okamoto K, Imashiro K, Akizawa Y, Onimura A, Yoneda M, Nitta Y, Maekawa N, Yanase H (2010) Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett 32:909–913. https://doi.org/10.1007/s10529-010-0243-7

    Article  CAS  PubMed  Google Scholar 

  13. Okamoto K, Kanawaku R, Masumoto M, Yanase H (2012) Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzyme Microb Technol 50:96–100. https://doi.org/10.1016/j.enzmictec.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto K, Uchii A, Kanawaku R, Yanase H (2014) Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springerplus 3:121. https://doi.org/10.1186/2193-1801-3-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pronk JTJJT, Steensma HY, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633 https://doi.org/10.1002/(SICI)1097-0061(199612)12:16%3C1607::AID-YEA70%3E3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177. https://doi.org/10.1111/j.1751-7915.2008.00078.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109. https://doi.org/10.1111/j.1469-8137.2010.03572.x

    Article  PubMed  Google Scholar 

  19. Wang J, Hirabayashi S, Mori T, Kawagishi H, Hirai H (2016) Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624. J Biosci Bioeng 122:17–21. https://doi.org/10.1016/j.jbiosc.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Suzuki T, Dohra H, Takigami S, Kako H, Soga A, Kamei I, Mori T, Kawagishi H, Hirai H (2016) Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-sEq. BMC Genomics 17:616. https://doi.org/10.1186/s12864-016-2977-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamagishi K, Kimura T, Oita S, Sugiura T, Hirai H (2007) Transformation by complementation of a uracil auxotroph of the hyper lignin-degrading basidiomycete Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 76:1079–1091. https://doi.org/10.1007/s00253-007-1093-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (Grant No. 17K08167) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Hirai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, T., Kondo, O., Kawagishi, H. et al. Effects of Glucose Concentration on Ethanol Fermentation of White-Rot Fungus Phanerochaete sordida YK-624 Under Aerobic Conditions. Curr Microbiol 76, 263–269 (2019). https://doi.org/10.1007/s00284-018-01622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-01622-3

Navigation