Skip to main content
Log in

The Green Microalga Chlorella saccharophila as a Suitable Source of Oil for Biodiesel Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the potential of the green microalga Chlorella saccharophila as a source of oil for biodiesel production. We evaluated for the first time, the effect of salinity and/or nitrogen depletion (ND) on cell growth, lipid accumulation and lipid profile in this microalga. The fatty acid methyl esters (FAME) identified for C. saccharophila in this study consisted of C-16:0, C-18:0, C-18:1 cis, and C-18:1 trans. Among these, C-18:1 (indicator of biodiesel quality) was the main FAME found, representing approximately 76 and 80% of total FAME under normal and ND growing conditions, respectively. Under a normal growing condition this microalga showed 154.63 mg l−1 d−1, 63.33 mg l−1 d−1, and 103.73 mg l−1 of biomass productivity, lipid productivity, and FAME yield, respectively. The higher biomass productivity (159.58 mg l−1 d−1), lipid productivity (99.33 mg l−1 d−1), and FAME yield (315.53 mg l−1) were obtained under the ND treatment. In comparison to other related studies, our results suggest that C. saccharophila can be considered as a suitable source of oil for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anemaet IG, Bekker M, Hellingwerf KJ (2010) Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol 12:619–629

    Article  PubMed  CAS  Google Scholar 

  2. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  PubMed  CAS  Google Scholar 

  3. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54:1665–1669

    Article  PubMed  CAS  Google Scholar 

  4. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  CAS  Google Scholar 

  5. Gouveia L, Marques AE, Lopes da Silva T, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  PubMed  CAS  Google Scholar 

  6. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  7. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  8. Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Article  PubMed  CAS  Google Scholar 

  9. Ho S-H, Chen W-M, Chang JS (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Biores Technol 101:8725–8730

    Article  CAS  Google Scholar 

  10. Husic HD, Tolbert NE (1986) Effect of osmotic stress on carbon metabolism in Chlamydomonas reinhardtii. Plant Physiol 82:594–596

    Article  PubMed  CAS  Google Scholar 

  11. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbiol Technol 27:631–635

    Article  CAS  Google Scholar 

  12. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  13. Leon R, Galván F (1994) Halotolerance studies on Chlamydomonas reinhardtii: glycerol excretion by free and immobilized cells. J Appl Phycol 6:13–20

    Article  CAS  Google Scholar 

  14. Leung DYC, Koo BCP, Guo Y (2006) Degradation of biodiesel under different storage conditions. Biores Technol 97:250–256

    Article  CAS  Google Scholar 

  15. Li Y, Horsman M, Wang B et al (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  PubMed  CAS  Google Scholar 

  16. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  17. Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  PubMed  CAS  Google Scholar 

  18. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Biores Technol 97:841–846

    Article  CAS  Google Scholar 

  19. O’Grady J, Morgan J (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 34:121–125

    Article  PubMed  Google Scholar 

  20. Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 35:281–285

    Article  CAS  Google Scholar 

  21. Rao AR, Dayananda C, Sarada R et al (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Biores Technol 98:560–564

    Article  CAS  Google Scholar 

  22. Rodolfi L, Zittelli GC, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  23. Schenk P, Thomas S, Stephens E (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  24. Seto A, Wang HL, Hesseltine CW (1984) Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J Am Oil Chem Soc 61:892–894

    Article  CAS  Google Scholar 

  25. Siaut M, Cuiné S, Cagnon C et al (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:1–15

    Article  Google Scholar 

  26. Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

  27. Tan CK, Johns MR (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19

    Article  CAS  Google Scholar 

  28. Vazquez-Duhalt R, Arrendondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race a). Phytochemistry 30:2919–2925

    Article  CAS  Google Scholar 

  29. Vigeolas H, Geigenberger P (2004) Increased levels of glycerol-3-phosphate lead to a stimulation of flux into tryacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta 219:827–835

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, Min M, Li Y et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  PubMed  CAS  Google Scholar 

  31. Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  32. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  PubMed  CAS  Google Scholar 

  33. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  PubMed  CAS  Google Scholar 

  34. Zuppini A, Gerotto C, Baldan B (2010) Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol 51:884–895

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Centro de Investigación Científica de Yucatán (CICY, Mexico) through the project FB0054. Patricia Y. Contreras-Pool is grateful to Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for the scholarship No. 224389. Authors are grateful to Ileana C. Borges Argáez, Tanit Toledano Thompson and Jorge Domínguez Maldonado for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Herrera-Valencia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-Valencia, V.A., Contreras-Pool, P.Y., López-Adrián, S.J. et al. The Green Microalga Chlorella saccharophila as a Suitable Source of Oil for Biodiesel Production. Curr Microbiol 63, 151–157 (2011). https://doi.org/10.1007/s00284-011-9956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9956-7

Keywords

Navigation