Skip to main content
Log in

Biodiesel Production from Botryococcus sudeticus and Chlorella vulgaris: Assessment of Nitrogen Deficiency on Lipid, Fame Yield and Biodiesel Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biodiesel production from microalgae is considered a sustainable alternative to fossil fuel sources. The economic feasibility of algae-based biodiesel is highly related to biomass, lipid and FAME yield of the species. Thus, optimization of the culture conditions plays an important role in biodiesel production. The aim of this study is to compare lipid and FAME yield and biodiesel quality of two green algae species, Chlorella vulgaris, and Botryococcus sudeticus, under nitrogen deficiency conditions. For this purpose, algae species were cultured under optimum conditions until the stationary phase, then in the second phase the effect of nitrogen stress on total lipid, FAME content, and biodiesel quality were assessed. Although nitrogen-deficiency had negative impact on the growth and survival of both species, complete nitrogen removal from the medium stimulated the total lipid and FAME yield and the level of enhancement varied among species. FAME yield increased by 21% in B. sudeticus and 28% in C. vulgaris cultures under nitrogen deficiency conditions. The biodiesel properties of both cultures met European standards, on the other hand the absence of nitrogen did not reveal a significant effect on the cetane number values of C. vulgaris. However, it caused a reduction in B. sudeticus cultures. Nitrogen deficiency had a negative impact on the oxidative stability of B. sudeticus, reducing its ability to resist oxidation. However, it enhanced the oxidative stability of C. vulgaris in long-term storage. The results highlighted the importance of species-specific approaches to maximize both lipid content and biodiesel quality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this paper.

Abbreviations

ANOVA:

Analysis of variance

ASTM:

American Society for Testing and Materials

CN:

Cetane number

CFPP:

Cold flow plugging properties

Chl-a :

Chlorophyll-a

DU:

Degree of unsaturation

FA:

Fatty Acid

FAME:

Fatty acid methyl ester

IV:

Iodine value

LCSF:

Long chain saturated factors

MUFAs:

Monounsaturated fatty acids

SFAS :

Saturated fatty acids

PUFAs:

Polyunsaturated fatty acid

SV:

Saponification value

Acyl CoA:

Diacylglycerol acyltransferase

wt%:

Weight percentage (%)

DW:

Dry weight percentage (%)

UTEX:

Culture Collection of Algae at the University of Texas at Austin

CCAP:

Culture collection of algae and protozoa

FID:

Flame ionization detector

GC:

Gas chromatography

References

  1. Chai, F., Cao, F., Zhai, F., Chen, Y., Wang, X., Su, Z.: Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. Adv. Synth. Catal. (2007). https://doi.org/10.1002/adsc.200600419

    Article  Google Scholar 

  2. Abbaszaadeh, A., Ghobadian, B., Omidkhah, M.R., Najafi, G.: Current biodiesel production technologies: a comparative review. Energy Convers. Manag (2012). https://doi.org/10.1016/j.enconman.2012.02.027

    Article  Google Scholar 

  3. Ashokkumar, V., Agila, E., Sivakumar, P., Salam, Z., Rengasamy, R., Ani, F.N.: Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Eng. Convers. Manag (2014). https://doi.org/10.1016/j.enconman.2014.09.019

    Article  Google Scholar 

  4. Tsukahara, K., Sawayama, S.: Liquid fuel production using microalgae. J. Japan Pet. Inst (2005). https://doi.org/10.1627/jpi.48.251

    Article  Google Scholar 

  5. Rosenberg, J.N., Oyler, G.A., Wilkinson, L., Betenbaugh, M.J.: A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. (2008). https://doi.org/10.1016/j.copbio.2008.07.008

    Article  Google Scholar 

  6. Mahfouz, A.B., Ali, A., Crocker, M., Ahmed, A., Nasir, R., Show, P.L.: Neural-Network-Inspired Correlation (N2IC) model for estimating biodiesel conversion in algal biodiesel units. Fermentation (2023). https://doi.org/10.3390/fermentation9010047

    Article  Google Scholar 

  7. Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. (2011). https://doi.org/10.1016/j.pecs.2010.01.003

    Article  Google Scholar 

  8. El-Sheekh, M., Abomohra, A.E.F., Hanelt, D.: Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J. Microbiol. Biotechnol. (2013). https://doi.org/10.1007/s11274-012-1248-2

    Article  Google Scholar 

  9. Al-Humairi, S.T., Lee, J.G.M., Harvey, A.P., Salman, A.D., Juzsakova, T., Van, B., Le, P., La, D.D., Mungray, A.K., Show, P.L., Nguyen, D.D.: A foam column system harvesting freshwater algae for biodiesel production: an experiment and process model evaluations. Sci. Total. Environ. (2023). https://doi.org/10.1016/j.scitotenv.2022.160702

    Article  Google Scholar 

  10. Hasnain, M., Abideen, Z., Hashmi, S., Naz, S., Munir, N.: Assessing the potential of nutrient deficiency for enhancement of biodiesel production in algal resources. Biofuels (2023). https://doi.org/10.1080/17597269.2022.2106640

    Article  Google Scholar 

  11. Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N., Heimann, K.: Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies (2013). https://doi.org/10.3390/en6115676

    Article  Google Scholar 

  12. Chu, F.-F., Chu, P.-N., Cai, P.-J., Li, W.-W., Lam, P.K.S., Zeng, R.J.: Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour. Technol. (2013). https://doi.org/10.1016/j.biortech.2013.01.131

    Article  Google Scholar 

  13. Ikaran, Z., Suárez-Alvarez, S., Urreta, I., Castañón, S.: The effect of nitrogen limitation on the physiology and metabolism of chlorella vulgaris var L3. Algal Res. (2015). https://doi.org/10.1016/j.algal.2015.04.023

    Article  Google Scholar 

  14. Shen, X.F., Liu, J.J., Chu, F.F., Lam, P.K.S., Zeng, R.J.: Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2015.08.057

    Article  Google Scholar 

  15. Singh, P., Guldhe, A., Kumari, S., Rawat, I., Bux, F.: Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem. Eng. J. (2015). https://doi.org/10.1016/j.bej.2014.10.019

    Article  Google Scholar 

  16. Nagappan, S., Bhosale, R., Duc Nguyen, D., Pugazhendhi, A., Tsai, P.-C., Chang, S.W., Ponnusamy, V.K., Kumar, G.: Nitrogen-fixing cyanobacteria as a potential resource for efficient biodiesel production. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.118440

    Article  Google Scholar 

  17. Ruangsomboon, S.: Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.01.091

    Article  Google Scholar 

  18. Markou, G., Nerantzis, E.: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol. Adv. (2013). https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  Google Scholar 

  19. Farese, R.V., Cases, S., Smith, S.J.: Triglyceride synthesis: Insights from the cloning of diacylglycerol acyltransferase. Curr. Opin. Lipidol. (2000). https://doi.org/10.1097/00041433-200006000-00002

    Article  Google Scholar 

  20. Stephenson, A.L., Dennis, J.S., Howe, C.J., Scott, S.A., Smith, A.G.: Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels (2010). https://doi.org/10.4155/bfs.09.1

    Article  Google Scholar 

  21. Vishwakarma, R., Dhar, D.W., Saxena, S.: Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp and Chlorella sp. Environ. Sci. Pollut. Res. (2019). https://doi.org/10.1007/s11356-019-04213-2

    Article  Google Scholar 

  22. Knothe, G.: “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels (2008). https://doi.org/10.1021/ef700639e

    Article  Google Scholar 

  23. European Standard EN 14214 (2004) Automotive fuels-fatty acid methyl esters (FAME) for diesel engines-requirements and test methods. European Committee for Standardization, Brussels

  24. American Society for Testing and Materials (ASTM) D6751 (2008) Standard Specification for Biodiesel Fuel (B100) Blend Stock for Distillate Fuels, ASTM International: West Conshohocken, PA

  25. Tan, X.B., Lam, M.K., Uemura, Y., Lim, J.W., Wong, C.Y., Ramli, A., Kiew, P.L., Lee, K.T.: Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Convers. Manag. (2018). https://doi.org/10.1016/j.enconman.2018.03.020

    Article  Google Scholar 

  26. Zhou, R., Wolk, C.P.: Identification of an akinete marker gene in Anabaena variabilis. J. Bacteriol. (2002). https://doi.org/10.1128/JB.184.9.2529-2532.2002

    Article  Google Scholar 

  27. Sarayloo, E., Simsek, S., Unlu, Y.S., Cevahir, G., Erkey, C., Kavakli, I.H.: Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2017.11.105

    Article  Google Scholar 

  28. Yeh, K.-L., Chang, J.-S.: Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. (2012). https://doi.org/10.1016/j.biortech.2011.11.103

    Article  Google Scholar 

  29. Rao, A.R., Dayananda, C., Sarada, R., Shamala, T.R., Ravishankar, G.A.: Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour. Technol. Rep. (2007). https://doi.org/10.1016/j.biortech.2006.02.007

    Article  Google Scholar 

  30. Hidalgo, P., Ciudad, G., Navia, R.: Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2015.11.031

    Article  Google Scholar 

  31. Jin, J., Dupré, C., Yoneda, K., Watanabe, M.M., Legrand, J., Grizeau, D.: Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: Recent advances and opportunities. Process Biochem. (2016). https://doi.org/10.1016/j.procbio.2015.11.026

    Article  Google Scholar 

  32. Eroglu, E., Okada, S., Melis, A.: Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification. J. Appl. Phycol. (2011). https://doi.org/10.1007/s10811-010-9577-8

    Article  Google Scholar 

  33. Sun, D., Zhu, J., Fang, L., Zhang, X., Chow, Y., Liu, J.: De novo transcriptome profiling uncovers a drastic downregulation of photosynthesis upon nitrogen deprivation in the nonmodel green alga Botryosphaerella sudeticus. BMC Genomics (2013). https://doi.org/10.1186/1471-2164-14-715

    Article  Google Scholar 

  34. Kalacheva, G.S., Zhila, N.O., Volova, T.G., Gladyshev, M.I.: The effect of temperature on the lipid composition of the green alga Botryococcus. Microbiol (2002). https://doi.org/10.1023/A:1015898426573

    Article  Google Scholar 

  35. Rippka, R., Deruelles, J., Waterbury, J.B.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiol 111(1), 1–61 (1979)

    Article  Google Scholar 

  36. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. (1959). https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  37. Lepage, G., Roy, C.C.: Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. (1984). https://doi.org/10.1016/s0022-2275(20)34457-6

    Article  Google Scholar 

  38. EN 14103:20 (2020) Fat and Oil Derivatives-Fatty Acid Methyl Esters (FAME) - Determination of Ester and Linolenic Acid Methyl Ester Contents; European Committee for Standardization, Brussels, available at https://www.en-standard.eu/une-en-14103-2020-fat

  39. Knothe, G.: Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. (2005). https://doi.org/10.1016/j.fuproc.2004.11.002

    Article  Google Scholar 

  40. Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., de Souza, C.O., Vich, D.V., de Carvalho, G.C., Nascimento, M.A.: Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. (2013). https://doi.org/10.1007/s12155-012-9222-2

    Article  Google Scholar 

  41. Krisnangkura, K.: A simple method for estimation of cetane index of vegetable oil methyl esters. J. Am. Oil Chem. Soc. 63(4), 552–553 (1986)

    Article  Google Scholar 

  42. Francisco, E.C., Neves, D.B., Jacob-Lopes, E., Franco, T.T.: Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. (2010). https://doi.org/10.1002/jctb.2338

    Article  Google Scholar 

  43. Sharma, A.K., Sahoo, P.K., Singhal, S., Patel, A.: Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech (2016). https://doi.org/10.1007/s13205-016-0434-6

    Article  Google Scholar 

  44. Cheng, P., Ji, B., Gao, L., Zhang, W., Wang, J., Liu, T.: The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour. Technol. (2013). https://doi.org/10.1016/j.biortech.2013.03.150

    Article  Google Scholar 

  45. Choi, G.G., Kim, B.H., Ahn, C.Y., Oh, H.M.: Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii. J. Appl. Phycol. (2011). https://doi.org/10.1007/s10811-010-9636-1

    Article  Google Scholar 

  46. Dunstan, G.A., Volkman, J.K., Barrett, S.M., Garland, C.D.: Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol. 5, 71–83 (1993)

    Article  Google Scholar 

  47. Syrett, P.J.: Nitrogen assimilation. In: Lewin, R.A. (ed.) Physiology and Biochemistry of Algae, pp. 171–188. Academic Press, Newyork (1962)

    Google Scholar 

  48. Mandalam, R.K., Palsson, B.: Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol. Bioeng. 59(5), 605–611 (1998)

    Article  Google Scholar 

  49. Tanoi, T., Kawachi, M., Watanabe, M.M.: Effects of carbon source on growth and morphology of Botryococcus braunii. J. Appl. Phycol. (2011). https://doi.org/10.1007/s10811-010-9528-4

    Article  Google Scholar 

  50. Mohsenpour, S.F., Richards, B., Willoughby, N.: Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour. Technol. (2012). https://doi.org/10.1016/j.biortech.2012.08.072

    Article  Google Scholar 

  51. Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Del Borghi, M.: Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif (2009). https://doi.org/10.1016/j.cep.2009.03.006

    Article  Google Scholar 

  52. Bibi, F., Ishtiaq Ali, M., Ahmad, M., Bokhari, A., Shiong Khoo, K., Zafar, M., Asif, S., Mubashir, M., Han, N., Loke Show, P.: Production of lipids biosynthesis from Tetradesmus nygaardii microalgae as a feedstock for biodiesel production. Fuel (2022). https://doi.org/10.1016/j.fuel.2022.124985

    Article  Google Scholar 

  53. Piorreck, M., Baasch, K.H., Pohl, P.: Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry (1984). https://doi.org/10.1016/S0031-9422(00)80304-0

    Article  Google Scholar 

  54. Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M.: Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2009.03.030

    Article  Google Scholar 

  55. Shanmugam, S., Mathimani, T., Anto, S., Sudhakar, M.P., Kumar, S.S., Pugazhendhi, A.: Cell density, lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresour. Technol. (2020). https://doi.org/10.1016/j.biortech.2020.123061

    Article  Google Scholar 

  56. Rai, M.P., Gupta, S.: Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers. Manag (2017). https://doi.org/10.1016/j.enconman.2016.05.018

    Article  Google Scholar 

  57. Knothe, G.: Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. (2009). https://doi.org/10.1039/b903941d

    Article  Google Scholar 

  58. Ashokkumar, V., Salam, Z., Sathishkumar, P., Hadibarata, T., Mohd Yusoff, A.R., Ani, F.N.: Exploration of fast growing Botryococcus sudeticus for upstream and downstream process in sustainable biofuels production. J. Clean. Prod. (2015). https://doi.org/10.1016/j.jclepro.2015.01.004

    Article  Google Scholar 

  59. Moradi-kheibari, N., Ahmadzadeh, H., Hosseini, M.: Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess Biosyst. Eng. (2017). https://doi.org/10.1007/s00449-017-1794-y

    Article  Google Scholar 

  60. Ashokkumar, V., Rengasamy, R.: Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour. Technol. (2012). https://doi.org/10.1016/j.biortech.2011.10.093

    Article  Google Scholar 

  61. Deshmukh, S., Bala, K., Kumar, R.: Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production. Environ. Sci. Pollut. Res. (2019). https://doi.org/10.1007/s11356-019-05692-z

    Article  Google Scholar 

  62. Xin, L., Hong-ying, H., Ke, G., Ying-xue, S.: Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2010.02.016

    Article  Google Scholar 

  63. Wu, H., Miao, X.: Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour. Technol. (2014). https://doi.org/10.1016/j.biortech.2014.08.017

    Article  Google Scholar 

  64. Mandotra, S.K., Kumar, P., Suseela, M.R., Ramteke, P.W.: Freshwater green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour. Technol. (2014). https://doi.org/10.1016/j.biortech.2013.12.127

    Article  Google Scholar 

  65. Fang, J.Y., Chiu, H.C., Wu, J.T., Chiang, Y.R., Hsu, S.H.: Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin. Int. J. Pharm. (2004). https://doi.org/10.1016/j.ijpharm.2004.02.026

    Article  Google Scholar 

  66. Mandotra, S.K., Kumar, P., Suseela, M.R., Nayaka, S., Ramteke, P.W.: Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2015.11.042

    Article  Google Scholar 

  67. Dunn, R.O., Bagby, M.O.: Low-temperature properties of triglyceride-based diesel fuels: transesterified methyl esters and petroleum middle distillate/ester blends. J. Am. Oil Chem. Soc. (1995). https://doi.org/10.1007/BF02542067

    Article  Google Scholar 

  68. Wu, M., Wu, G., Han, L., Wang, J.: Low-temperature fluidity of bio-diesel fuel prepared from edible vegetable oil. Pet. Process. Petrochem. 36, 57–60 (2005)

    Google Scholar 

  69. Mittelbach M, Remschmidt C (2004) Biodiesel: the comprehensive handbook. Martin Mittelbach

Download references

Acknowledgements

We would like to thank Dr. Zeynep DORAK for her help in statistical analysis, and Dr. Cenk Gürevin, and Cansu Atar for their technical support in the laboratory.

Funding

This study was funded by Scientific Research Projects Coordination Unit of Istanbul University (Project number: 36334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriç Albay.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oğuz, A., Köker, L., Ozbayram, E.G. et al. Biodiesel Production from Botryococcus sudeticus and Chlorella vulgaris: Assessment of Nitrogen Deficiency on Lipid, Fame Yield and Biodiesel Properties. Waste Biomass Valor 15, 2757–2768 (2024). https://doi.org/10.1007/s12649-023-02359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02359-2

Keywords

Navigation