Skip to main content

Advertisement

Log in

Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Both bone marrow mesenchymal stromal cells (BMSCs) and adipose-derived mesenchymal stromal cells (ADSCs) are good sources for tissue engineering. To maximize therapeutic efficacy of MSCs, an appropriate source of MSCs should be selected according to their own inherent characteristics for future clinical application. Hence, this study was conducted to compare proliferative, differential and antiapoptosis abilities of both MSCs derived from exercised and sedentary rats under normal and hypoxia/serum deprivation conditions (H/SD). Our results showed that exercise may enhance proliferative ability and decrease adipogenic ability of BMSCs and ADSCs. However, positive effect of exercise on osteogenesis was only observed for BMSCs in either environment. Little effect was observed on the antiapoptotic ability of both MSC types. It was also suggested that biological characteristics of both types were partly changed. It is therefore believed that BMSCs derived from exercised rat on early passage may be a good cell source for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. doi:10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  2. Kubosch EJ, Heidt E, Niemeyer P, Bernstein A, Südkamp NP, Schmal H (2017) In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation - a comparison : Synovial stem cells as an alternative cell source for autologous chondrocyte implantation. Int Orthop. doi:10.1007/s00264-017-3400-y

    PubMed  Google Scholar 

  3. Centeno CJ, Al-Sayegh H, Freeman MD, Smith J, Murrell WD, Bubnov R (2016) A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions. Int Orthop 40(8):1755–65. doi:10.1007/s00264-016-3162-y

    Article  PubMed  Google Scholar 

  4. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, Tarle SA, Bartel RL, Giannobile WV (2013) Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 22:767–777. doi:10.3727/096368912x652968

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hernigou P, Dubory A, Roubineau F, Homma Y, Flouzat-Lachaniette CH, Chevallier N, Rouard H (2017) Allografts supercharged with bone-marrow-derived mesenchymal stem cells possess equivalent osteogenic capacity to that of autograft: a study with long-term follow-ups of human biopsies

  6. Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ, Stojanović S, Najman SJ (2015) Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model. Int Orthop 39(11):2173–80. doi:10.1007/s00264-015-2929-x

    Article  PubMed  Google Scholar 

  7. Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M (2014) Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a comparative study. Int J Stem Cells 7:135–142. doi:10.15283/ijsc.2014.7.2.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Zhang X, Wang S, Xu L, Zhang M, Wang G, Jin Y, Zhang X, Jiang X (2013) Comparison of the use of adipose tissue-derived and bone marrow-derived stem cells for rapid bone regeneration. J Dent Res 92:1136–1141. doi:10.1177/0022034513507581

    Article  CAS  PubMed  Google Scholar 

  9. Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA (2015) A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab 33:371–382. doi:10.1007/s00774-014-0601-y

    Article  CAS  PubMed  Google Scholar 

  10. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  11. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297. doi:10.1002/jcb.20904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, Bunnell BA (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 68:4229–4238. doi:10.1158/0008-5472.can-07-5272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70:37–47. doi:10.1016/j.bone.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  14. Zaim M, Karaman S, Cetin G, Isik S (2012) Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 91:1175–1186. doi:10.1007/s00277-012-1438-x

    Article  PubMed  Google Scholar 

  15. Jin P, Zhang X, Wu Y, Li L, Yin Q, Zheng L, Zhang H, Sun C (2010) Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transplant Proc 42:2745–2752. doi:10.1016/j.transproceed.2010.05.145

    Article  CAS  PubMed  Google Scholar 

  16. Efimenko A, Dzhoyashvili N, Kalinina N, Kochegura T, Akchurin R, Tkachuk V, Parfyonova Y (2014) Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl Med 3:32–41. doi:10.5966/sctm.2013-0014

    Article  CAS  PubMed  Google Scholar 

  17. Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, Hung SH, Fu YC, Wang YH, Wang HI, Wang GJ, Kang L, Chang JK (2012) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–593. doi:10.1111/j.1582-4934.2011.01335.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu Y, Li R, Zhong J, Fu N, Wei X, Cun X, Deng S, Li G, Xie J, Cai X, Lin Y (2014) Adipogenic differentiation potential of adipose-derived mesenchymal stem cells from ovariectomized mice. Cell Prolif 47:604–614. doi:10.1111/cpr.12131

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Lombardi G, Jiao W, Banfi G (2016) Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sports Med 46:1165–1182. doi:10.1007/s40279-016-0494-0

    Article  PubMed  Google Scholar 

  20. Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH (2007) Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res 22:251–259. doi:10.1359/jbmr.061107

    Article  PubMed  Google Scholar 

  21. Zhu W, Chen J, Cong X, Hu S, Chen X (2006) Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24:416–425. doi:10.1634/stemcells.2005-0121

    Article  PubMed  Google Scholar 

  22. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X (2008) Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells 26:135–145. doi:10.1634/stemcells.2007-0098

    Article  CAS  PubMed  Google Scholar 

  23. Shu W, Shu YT, Dai CY, Zhen QZ (2012) Comparing the biological characteristics of adipose tissue-derived stem cells of different persons. J Cell Biochem 113:2020–2026. doi:10.1002/jcb.24070

    Article  CAS  PubMed  Google Scholar 

  24. Tang L, Yin Y, Zhou H, Song G, Fan A, Tang B, Shi W, Li Z (2012) Proliferative capacity and pluripotent characteristics of porcine adult stem cells derived from adipose tissue and bone marrow. Cell Reprogram 14:342–352. doi:10.1089/cell.2011.0098

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ni GX, Liu SY, Lei L, Li Z, Zhou YZ, Zhan LQ (2013) Intensity-dependent effect of treadmill running on knee articular cartilage in a rat model. Biomed Res Int 2013:172392. doi:10.1155/2013/172392

    PubMed  PubMed Central  Google Scholar 

  26. Su N, Sun Q, Li C, Lu X, Qi H, Chen S, Yang J, Du X, Zhao L, He Q, Jin M, Shen Y, Chen D, Chen L (2010) Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum Mol Genet 19:1199–1210. doi:10.1093/hmg/ddp590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991. doi:10.1002/jcb.22091

    Article  CAS  PubMed  Google Scholar 

  28. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. doi:10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  29. Wagner W, Bork S, Lepperdinger G, Joussen S, Ma N, Strunk D, Koch C (2010) How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY) 2:224–230. doi:10.18632/aging.100136

    Article  CAS  Google Scholar 

  30. Lee KA, Shim W, Paik MJ, Lee SC, Shin JY, Ahn YH, Park K, Kim JH, Choi S, Lee G (2009) Analysis of changes in the viability and gene expression profiles of human mesenchymal stromal cells over time. Cytotherapy 11:688–697. doi:10.3109/14653240902974032

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Ou G, Hamrick M, Hill W, Borke J, Wenger K, Chutkan N, Yu J, Mi QS, Isales CM, Shi XM (2008) Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J Bone Miner Res 23:1118–1128. doi:10.1359/jbmr.080304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trokovic R, Weltner J, Noisa P, Raivio T, Otonkoski T (2015) Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells. Stem Cell Res 15:254–262. doi:10.1016/j.scr.2015.06.001

    Article  PubMed  Google Scholar 

  33. Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579. doi:10.1016/j.biomaterials.2010.01.085

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi O, Katsube Y, Hirose M, Ohgushi H, Ito H (2008) Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 82:238–247. doi:10.1007/s00223-008-9112-y

    Article  CAS  PubMed  Google Scholar 

  35. Kang BJ, Ryu HH, Park SS, Koyama Y, Kikuchi M, Woo HM, Kim WH, Kweon OK (2012) Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton’s jelly for treating bone defects. J Vet Sci 13:299–310

    Article  PubMed  PubMed Central  Google Scholar 

  36. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148:2553–2562. doi:10.1210/en.2006-1704

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Wang S, Bu S, Wang Y, Duan Y, Yang S (2011) Treadmill training prevents bone loss by inhibition of PPARgamma expression but not promoting of Runx2 expression in ovariectomized rats. Eur J Appl Physiol 111:1759–1767. doi:10.1007/s00421-010-1820-0

    Article  CAS  PubMed  Google Scholar 

  38. Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone 43:613–620. doi:10.1016/j.bone.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  39. Wallace IJ, Pagnotti GM, Rubin-Sigler J, Naeher M, Copes LE, Judex S, Rubin CT, Demes B (2015) Focal enhancement of the skeleton to exercise correlates with responsivity of bone marrow mesenchymal stem cells rather than peak external forces. J Exp Biol 218:3002–3009. doi:10.1242/jeb.118729

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10:939–953. doi:10.1007/s10237-010-0285-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, Fuchs RK (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111:5337–5342. doi:10.1073/pnas.1321605111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heo SJ, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL (2015) Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci Rep 5:16895. doi:10.1038/srep16895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M, Di Nardo P (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24:23–33. doi:10.1634/stemcells.2004-0176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Xin Ni.

Ethics declarations

Competing interests

ShengYao Liu, YongBin He, SongYun Deng, WenTing Zhu and GuoXin Ni declare that they have no conflicts of interest.

Funding

This work was supported by National Natural Science Foundation of China (81572219), Guangdong Natural Science Foundation (2014A030313307) and Fujian Natural Science Foundation (2016J01450).

Ethical approval

All procedures performed in this study were in accordance with animal ethics committee of Nanfang Hospital, Southern Medical University.

Additional information

Sheng-Yao Liu, Yong-Bin He, and Song-Yun Deng are first coauthors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SY., He, YB., Deng, SY. et al. Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue. International Orthopaedics (SICOT) 41, 1199–1209 (2017). https://doi.org/10.1007/s00264-017-3441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3441-2

Keywords

Navigation