Skip to main content
Log in

Lymphatic pathway around the pancreatic head and extrahepatic bile duct: evaluation using MR imaging at 3.0-T

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the utility of spectral presaturation with inversion recovery (SPIR) T2-weighted images with 3-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) at 3.0-T for the detection of the normal lymphatic systems located around the pancreatic head and extrahepatic bile duct.

Materials and methods

Fifty-six patients with suspected hepatic or pancreaticobiliary diseases and diagnosed as normal or benign pathologies were evaluated as having normal lymphatic systems. The protocol consisted of SPIR T2-weighted sequences with 3D-VISTA. The lymphatic systems were defined as fluid signal intensity structures and divided into eight portions and interobserver agreement was evaluated using weighted kappa statistics. Three readers graded the visualization of each portion using a five-point scale. The detectability of each portion was calculated by defining grades 1–2 as detectable and grades 3–5 as undetectable.

Results

Interobserver agreement regarding the visualization grades was moderate to almost perfect. All readers rated the detectability of the lymphatic systems of the superior and posterior portions of the pancreatic head, pericholedochal, right abdominoaortic, and interaorticovenous portions as 100%, and that of the anterior portion of the pancreatic head as 98.2%. For the inferior portion of the pancreatic head, the detectability was 100% for reader 2 and 96.4% for readers 1 and 3.

Conclusion

The lymphatic systems located around the pancreatic head and extrahepatic bile duct could be sufficiently visualized on SPIR T2-weighted images with 3D-VISTA at 3.0-T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pomianowska E, Westgaard A, Mathisen O, Clausen OP, Gladhaug IP (2013) Prognostic relevance of number and ratio of metastatic lymph nodes in resected pancreatic, ampullary, and distal bile duct carcinomas. Ann Surg Oncol 20:233–241

    Article  PubMed  Google Scholar 

  2. Zacharias T, Jaeck D, Oussoultzoglou E, Neuville A, Bachellier P (2007) Impact of lymph node involvement on long-term survival after R0 pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas. J Gastrointest Surg 11:350–356

    Article  PubMed  Google Scholar 

  3. Sugiura T, Uesaka K, Mihara K, et al. (2013) Margin status, recurrence pattern, and prognosis after resection of pancreatic cancer. Surgery 154:1078–1086

    Article  PubMed  Google Scholar 

  4. Ito K, Ito H, Allen PJ, et al. (2010) Adequate lymph node assessment for extrahepatic bile duct adenocarcinoma. Ann Surg 251:675–681

    Article  PubMed  Google Scholar 

  5. Sahani DV, Bonaffini PA, Catalano OA, Guimaraes AR, Blake MA (2012) State-of-the-art PET/CT of the pancreas: current role and emerging indications. Radiographics 32:1133–1158 (discussion 1158–1160)

    Article  PubMed  Google Scholar 

  6. Kauhanen SP, Komar G, Seppänen MP, et al. (2009) A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg 250:957–963

    Article  PubMed  Google Scholar 

  7. Park HS, Lee JM, Choi HK, et al. (2009) Preoperative evaluation of pancreatic cancer: comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J Magn Reson Imaging 30:586–595

    Article  PubMed  Google Scholar 

  8. Furukawa H, Ikuma H, Asakura-Yokoe K, Uesaka K (2008) Preoperative staging of biliary carcinoma using 18F-fluorodeoxyglucose PET: prospective comparison with PET + CT, MDCT and histopathology. Eur Radiol 18:2841–2847

    Article  PubMed  Google Scholar 

  9. Deki H, Sato T (1988) An anatomic study of the peripancreatic lymphatics. Surg Radiol Anat 10:121–135

    Article  CAS  PubMed  Google Scholar 

  10. Samra JS, Gananadha S, Hugh TJ (2008) Surgical management of carcinoma of the head of pancreas: extended lymphadenectomy or modified en bloc resection? ANZ J Surg 78:228–236

    Article  PubMed  Google Scholar 

  11. Kayahara M, Nagakawa T, Ueno K, Ohta T, et al. (1993) Lymphatic flow in carcinoma of the distal bile duct based on a clinicopathologic study. Cancer 72:2112–2117

    Article  CAS  PubMed  Google Scholar 

  12. Nagakawa T, Konishi I, Ueno K, Ohta T, Kayahara M (1993) A clinical study on lymphatic flow in carcinoma of the pancreatic head area—peripancreatic regional lymph node grouping. Hepatogastroenterology 40:457–462

    CAS  PubMed  Google Scholar 

  13. Sai M, Mori H, Kiyonaga M, et al. (2010) Peripancreatic lymphatic invasion by pancreatic carcinoma: evaluation with multi-detector row CT. Abdom Imaging 35:154–162

    Article  PubMed  Google Scholar 

  14. Vitellas KM, Keogan MT, Spritzer CE, Nelson RC (2000) MR cholangiopancreatography of bile and pancreatic duct abnormalities with emphasis on the single-shot fast spin-echo technique. Radiographics 20:939–957

    Article  CAS  PubMed  Google Scholar 

  15. Fulcher AS, Turner MA, Capps GW, Zfass AM, Baker KM (1998) Half-Fourier RARE MR cholangiopancreatography: experience in 300 subjects. Radiology 207:21–32

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi S, Miyazaki M (1999) Thoracic duct: visualization at nonenhanced MR lymphography—initial experience. Radiology 212:598–600

    Article  CAS  PubMed  Google Scholar 

  17. Erden A, Fitoz S, Yagmurlu B, Erden I (2005) Abdominal confluence of lymph trunks: detectability and morphology on heavily T2-weighted images. AJR Am J Roentgenol 184:35–40

    Article  PubMed  Google Scholar 

  18. Pinto PS, Sirlin CB, Andrade-Barreto OA, et al. (2004) Cisterna chyli at routine abdominal MR imaging: a normal anatomic structure in the retrocrural space. Radiographics 24:809–817

    Article  PubMed  Google Scholar 

  19. Arrivé L, Azizi L, Lewin M, et al. (2007) MR lymphography of abdominal and retroperitoneal lymphatic vessels. AJR Am J Roentgenol 189:1051–1058

    Article  PubMed  Google Scholar 

  20. Yu DX, Ma XX, Zhang XM, Wang Q, Li CF (2010) Morphological features and clinical feasibility of thoracic duct: detection with nonenhanced magnetic resonance imaging at 3.0 T. J Magn Reson Imaging 32:94–100

    Article  PubMed  Google Scholar 

  21. Hori M, Kim T, Murakami T, et al. (2009) Uterine cervical carcinoma: preoperative staging with 3.0-T MR imaging—comparison with 1.5-T MR imaging. Radiology 251:96–104

    Article  PubMed  Google Scholar 

  22. Lichy MP, Wietek BM, Mugler JP 3rd, et al. (2005) Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 40:754–760

    Article  PubMed  Google Scholar 

  23. Cornfeld DM, Israel G, McCarthy SM, Weinreb JC (2008) Pelvic imaging using a T1 W fat-suppressed three-dimensional dual echo Dixon technique at 3T. J Magn Reson Imaging 28:121–127

    Article  PubMed  Google Scholar 

  24. Morakkabati-Spitz N, Schild HH, Kuhl CK, et al. (2006) Female pelvis: MR imaging at 3.0 T with sensitivity encoding and flip-angle sweep technique. Radiology 241:538–545

    Article  PubMed  Google Scholar 

  25. Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037

    Article  PubMed  Google Scholar 

  26. Rosenkrantz AB, Patel JM, Babb JS, Storey P, Hecht EM (2010) Liver MRI at 3 T using a respiratory-triggered time-efficient 3D T2-weighted technique: impact on artifacts and image quality. AJR Am J Roentgenol 194:634–641

    Article  PubMed  Google Scholar 

  27. Weigel M, Helms G, Hennig J (2010) Investigation and modeling of magnetization transfer effects in two-dimensional multislice turbo spin echo sequences with low constant or variable flip angles at 3 T. Magn Reson Med 63:230–234

    PubMed  Google Scholar 

  28. Taupitz M, Speidel A, Hamm B, et al. (1995) T2-weighted breath-hold MR imaging of the liver at 1.5 T: results with a three-dimensional steady-state free precession sequence in 87 patients. Radiology 194:439–446

    Article  CAS  PubMed  Google Scholar 

  29. Takayama Y, Nishie A, Asayama Y, et al. (2014) Three-dimensional T2-weighted imaging for liver MRI: clinical values of tissue-specific variable refocusing flip-angle turbo spin echo imaging. J Magn Reson Imaging . doi:10.1002/jmri.24554

    Google Scholar 

  30. Gadzijev EM (2002) Surgical anatomy of hepatoduodenal ligament and hepatic hilus. J Hepatobiliary Pancreat Surg 9:531–533

    Article  PubMed  Google Scholar 

  31. Donatini B, Hidden G (1992) Routes of lymphatic drainage from the pancreas: a suggested segmentation. Surg Radiol Anat 14:35–42

    Article  CAS  PubMed  Google Scholar 

  32. Pissas A (1984) Anatomoclinical and anatomosurgical essay on the lymphatic circulation of the pancreas. Anat Clin 6:255–280

    Article  CAS  PubMed  Google Scholar 

  33. Sobin LH, Gospodarowicz MK, Wittekind C (2009) TNM classification of malignant tumors, 7th edn. New York: Wiley-Blackwell

    Google Scholar 

  34. Wagner M, Klessen C, Rief M, et al. (2008) High-resolution T2-weighted abdominal magnetic resonance imaging using respiratory triggering: impact of butylscopolamine on image quality. Acta Radiol 49:376–382

    Article  CAS  PubMed  Google Scholar 

  35. Yang RK, Roth CG, Ward RJ, deJesus JO, Mitchell DG (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics 30:185–199

    Article  PubMed  Google Scholar 

  36. Kim HY, Yi CA, Lee KS, et al. (2008) Nodal metastasis in non-small cell lung cancer: accuracy of 3.0-T MR imaging. Radiology 246:596–604

    Article  PubMed  Google Scholar 

  37. Harisinghani MG, Dixon WT, Saksena MA, et al. (2004) MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10. Radiographics 24:867–878

    Article  PubMed  Google Scholar 

  38. Panush D, Fulbright R, Sze G, Smith RC, Constable RT (1993) Inversion-recovery fast spin-echo MR imaging: efficacy in the evaluation of head and neck lesions. Radiology 187:421–426

    Article  CAS  PubMed  Google Scholar 

  39. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  40. Ito K, Shimizu A, Tanabe M, Matsunaga N (2012) Cisterna chyli in patients with portal hypertension: evaluation with MR imaging. J Magn Reson Imaging 35:624–628

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Takashi Itou, a radiological technologist at Oita Diagnostic Imaging Center in regard to MR imaging.

Conflict of interest

All authors have no relevant conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Yamada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Y., Mori, H., Matsumoto, S. et al. Lymphatic pathway around the pancreatic head and extrahepatic bile duct: evaluation using MR imaging at 3.0-T. Abdom Imaging 40, 1617–1628 (2015). https://doi.org/10.1007/s00261-014-0346-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0346-z

Keywords

Navigation