Skip to main content
Log in

Characterization of the fusaric acid gene cluster in Fusarium fujikuroi

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The “bakanae” fungus Fusarium fujikuroi is a common pathogen of rice and produces a variety of mycotoxins, pigments, and phytohormones. Fusaric acid is one of the oldest known secondary metabolites produced by F. fujikuroi and some other Fusarium species. Investigation of its biosynthesis and regulation is of great interest due to its occurrence in cereal-based food and feed. This study describes the identification and characterization of the fusaric acid gene cluster in F. fujikuroi consisting of the PKS-encoding core gene and four co-regulated genes, FUB1FUB5. Besides fusaric acid, F. fujikuroi produces two fusaric acid-like derivatives: fusarinolic acid and 9,10-dehydrofusaric acid. We provide evidence that these derivatives are not intermediates of the fusaric acid biosynthetic pathway, and that their formation is catalyzed by genes outside of the fusaric acid gene cluster. Target gene deletions of all five cluster genes revealed that not all of them are involved in fusaric acid biosynthesis. We suggest that only two genes, FUB1 and FUB4, are necessary for the biosynthesis. Expression of the FUB genes and production of fusaric acid and the two derivatives are favored under high nitrogen. We show that nitrogen-dependent expression of fusaric acid genes is positively regulated by the nitrogen-responsive GATA transcription factor AreB, and that pH-dependent regulation is mediated by the transcription factor PacC. In addition, fusaric acid production is regulated by two members of the fungal-specific velvet complex: Vel1 and Lae1. In planta expression studies show a higher expression in the favorite host plant rice compared to maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham WR, Hanssen HP (1992) Fusoxysporone—a new type of diterpene from Fusarium oxysporum. Tetrahedron 48:10559–10562

    Article  CAS  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balan J, Fuska J, Kuhr I, Kuhrová V (1970) Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol 15:479–484

    Article  CAS  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    Article  CAS  PubMed  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Article  PubMed  Google Scholar 

  • Boonman N, Prachya S, Boonmee A, Kittakoop P, Wiyakrutta S, Sriubolmas N, Warit S, Dharmkrong-At Chusattayanond A (2012) In vitro acanthamoebicidal activity of fusaric acid and dehydrofusaric acid from an endophytic fungus Fusarium sp. Tlau3. Planta Med 78:1562–1567

    Article  CAS  PubMed  Google Scholar 

  • Braun R (1960) Über Wirkungsweise und Umwandlungen der Fusarinsäure. Phytopathol Z 39:197–241

    Article  Google Scholar 

  • Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532

    Article  CAS  PubMed  Google Scholar 

  • Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P (2012) Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 49:602–612

    Article  CAS  PubMed  Google Scholar 

  • Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole RJ, Kirksey JW, Cutler HG, Doupnik BL, Peckham JC (1973) Toxin from Fusarium moniliforme: effects on plants and animals. Science 179:1324–1326

    Article  CAS  PubMed  Google Scholar 

  • Darken MA, Jensen AL, Shu P (1959) Production of gibberellic acid by fermentation. Appl Microbiol 7:301–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desaty D, McInnes AG, Smith DG, Vining LC (1968) Use of 13C in biosynthetic studies. Incorporation of isotopically labelled acetate and aspartate in fusaric acid. Can J Biochem 46:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Sánchez V, Avalos J, Limón MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78:7258–7266

    Article  PubMed Central  PubMed  Google Scholar 

  • Dobson TA, Desaty D, Brewer D, Vining LC (1967) Biosynthesis of fusaric acid in cultures of Fusarium oxysporum Schlecht. Can J Biochem 45:809–823

    Article  CAS  PubMed  Google Scholar 

  • Geissman TA, Verbiscar AJ, Phinney BO, Cragg G (1966) Studies on the biosynthesis of gibberellins from (−)-kaurenoic acid in cultures of Gibberella fujikuroi. Phytochemistry 5:933–947

    Article  CAS  Google Scholar 

  • Hidaka H, Nagatsu T, Takeya K, Takeuchi T, Suda H (1969) Fusaric acid, a hypotensive agent produced by fungi. J Antibiot (Tokyo) 22:228–230

    Article  CAS  Google Scholar 

  • Hill RD, Unrau AM, Canvin DT (1966) The biosynthesis of fusaric acid from 14C-labelled acetate in Gibberella fujikuroi. Can J Chem 44(17):2077–2082

    Article  CAS  Google Scholar 

  • Kern H, Kluepfel D (1956) Die Bildung von Fusarinsäure durch Fusarium lycopersici in vivo. Experientia 12:181–182

    Article  CAS  Google Scholar 

  • Kleigrewe K, Aydin F, Hogrefe K, Piecuch P, Bergander K, Würthwein E-U, Humpf H-U (2012) Structure elucidation of new fusarins revealing insights in the rearrangement mechanisms of the Fusarium mycotoxin fusarin C. J Agric Food Chem 60:5497–5505

    Article  CAS  PubMed  Google Scholar 

  • López-Berges MS, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65

    Article  PubMed  Google Scholar 

  • Michielse CB, Pfannmüller A, Macios M, Rengers P, Dzikowska A, Tudzynski B (2013) The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol. doi:10.1111/mmi.12472

  • Mihlan M, Homann V, Liu T-D, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991

    Article  CAS  PubMed  Google Scholar 

  • Niehaus E-M, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M, Güldener U, Tudzynski B, Humpf H-U (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insides into the regulation and fusarin biosynthetic pathway. Chem Biol 20:1–12

    Article  Google Scholar 

  • Notz R, Maurhofer M, Dubach H, Haas D, Défago G (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pitel DW, Vining LC (1970) Accumulation of dehydrofusaric acid and its conversion to fusaric and 10-hydroxyfusaric acids in cultures of Gibberella fujikuroi. Can J Biochem 48:623–630

    Article  CAS  PubMed  Google Scholar 

  • Pontecorvo G, Roper JA, Chemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  PubMed  Google Scholar 

  • Porter JK, Bacon CW, Wray EM, Hagler WM Jr (1995) Fusaric acid in Fusarium moniliforme cultures, corn, and feeds toxic to livestock and the neurochemical effects in the brain and pineal gland of rats. Nat Toxins 3:91–100

    Article  CAS  PubMed  Google Scholar 

  • Ramautar A, Mabandla M, Blackburn J, Daniels WMU (2012) Inhibition of HIV-1 tat-induced transactivation and apoptosis by the divalent metal chelators, fusaric acid and picolinic acid—implications for HIV-1 dementia. Neurosci Res 74:59–63

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ortiz R, Limón MC, Avalos J (2009) Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants. Appl Environ Microbiol 75:405–413

    Article  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schönig B, Brown DW, Oeser B, Tudzynski B (2008) Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. Eukaryot Cell 7:1831–1846

    Article  PubMed Central  PubMed  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol 49:483–497

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Yee NK (2001) A concise synthesis of fusaric acid and (S)-(+)-fusarinolic acid. J Org Chem 66:605–608

    Article  CAS  PubMed  Google Scholar 

  • Stipanovic RD, Wheeler MH, Puckhaber LS, Liu J, Bell AA, Williams HJ (2011) Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum. J Agric Food Chem 59:5351–5356

    Article  CAS  PubMed  Google Scholar 

  • Stoll C (1954) Über Stoffwechsel und biologisch wirksame Stoffe von Gibberella fujikuroi (Saw.) Woll., dem Erreger der Bakanaekrankheit. Phytopathol Z 22:233–274

    Google Scholar 

  • Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tudzynski B, Mende K, Weltring KM, Kinghorn JR, Unkles SE (1996) The Gibberella fujikuroi niaD gene encoding nitrate reductase: isolation, sequence, homologous transformation and electrophoretic karyotype location. Microbiology 142:533–539

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B, Homann V, Feng B, Marzluf GA (1999) Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet 261:106–114

    Article  CAS  PubMed  Google Scholar 

  • van Pamel E, Verbeken A, Vlaemynck G, De Boever J, Daeseleire E (2011) Ultrahigh-performance liquid chromatographic-tandem mass spectrometric multimycotoxin method for quantitating 26 mycotoxins in maize silage. J Agric Food Chem 59:9747–9755

    Article  PubMed  Google Scholar 

  • Wang H, Ng TB (1999) Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sci 65:849–856

    Article  CAS  PubMed  Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946

    Article  CAS  PubMed  Google Scholar 

  • Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski B (2010) FfVel1 and Fflae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994

    CAS  Google Scholar 

  • Wiemann P, Albermann S, Niehaus E-M, Studt L, von Bargen KW, Brock NL, Humpf H-U, Dickschat JS, Tudzynski B (2012) The Sfp-type 4′-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity. PLoS ONE 7:e37519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiemann P, Sieber C, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huß K, Michielse C, Albermann S, Wagner D, Bergner S, Connolly L, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield B, Ophir R, Freeman S, Hippler M, Smith K, Brown D, Proctor R, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yabuta T, Kambe K, Hayashi T (1937) Biochemistry of the bakanae fungus. I. Fusarinic acid, a new product of the bakanae fungus. J Agric Chem Soc Jpn 10:1059–1068

    Google Scholar 

  • Yabuta T, Sumiki Y, Aso K, Tamura T, Igarashi H, Tamari K (1939) Biochemical studies on the bakanae fungus. IV. The culture conditions for producing gibberellin or fusaric acid. J Agric Chem Soc Jpn 15:1209–1220

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) TU 101/16-2 and HU 730/9-2. We thank Kathleen Huß for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans-Ulrich Humpf or Bettina Tudzynski.

Additional information

Maria Niehaus and Katharina W. von Bargen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1092 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehaus, EM., von Bargen, K.W., Espino, J.J. et al. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi . Appl Microbiol Biotechnol 98, 1749–1762 (2014). https://doi.org/10.1007/s00253-013-5453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5453-1

Keywords

Navigation