Skip to main content
Log in

Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1–10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas HK, Gelderblom WC, Cawood ME, Shier WT (1993) Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.) and mammalian cell cultures. Toxicon off J Int Soc Toxinology 31:345–353

    Article  CAS  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. doi:10.1093/nar/gkl198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Berger H, Basheer A, Böck S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J (2008) Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol 69:1385–1398. doi:10.1111/j.1365-2958.2008.06359.x

    Article  CAS  PubMed  Google Scholar 

  • Bergmann D, Hübner F, Humpf H-U (2013) Stable isotope dilution analysis of small molecules with carboxylic acid functions using 18O labeling for HPLC-ESI-MS/MS: analysis of fumonisin B1. J Agric Food Chem 61:7904–7908. doi:10.1021/jf4022702

    Article  CAS  PubMed  Google Scholar 

  • Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP, Horak RM, Marasas WFO, Spiteller G, Vleggaar R (1988) Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun:743–745. doi:10.1039/C39880000743

  • Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant-Microbe Interact 18:1333–1339. doi:10.1094/MPMI-18-1333

    Article  CAS  PubMed  Google Scholar 

  • Bluhm BH, Kim H, Butchko RAE, Woloshuk CP (2008) Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol 9:203–211. doi:10.1111/j.1364-3703.2007.00458.x

    Article  CAS  PubMed  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893. doi:10.1016/j.phytochem.2009.05.020

    Article  PubMed  Google Scholar 

  • Branham BE, Plattner RD (1993) Isolation and characterization of a new fumonisin from liquid cultures of Fusarium moniliforme. J Nat Prod 56:1630–1633. doi:10.1021/np50099a030

    Article  CAS  Google Scholar 

  • Brown DW, Cheung F, Proctor RH, Butchko RAE, Zheng L, Lee Y, Utterback T, Smith S, Feldblyum T, Glenn AE, Plattner RD, Kendra DF, Town CD, Whitelaw CA (2005) Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet Biol 42:848–861. doi:10.1016/j.fgb.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Butchko RAE, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218. doi:10.1128/EC.00400-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant-Microbe Interact 27:809–823. doi:10.1094/MPMI-09-13-0281-R

    Article  CAS  PubMed  Google Scholar 

  • Butchko RAE, Plattner RD, Proctor RH (2003a) FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J Agric Food Chem 51:3000–3006. doi:10.1021/jf0262007

    Article  CAS  PubMed  Google Scholar 

  • Butchko RAE, Plattner RD, Proctor RH (2003b) FUM9 is required for C-5 hydroxylation of fumonisins and complements the meitotically defined Fum3 locus in Gibberella moniliformis. Appl Environ Microbiol 69:6935–6937. doi:10.1128/AEM.69.11.6935-6937.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butchko RAE, Plattner RD, Proctor RH (2006) Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis. J Agric Food Chem 54:9398–9404. doi:10.1021/jf0617869

    Article  CAS  PubMed  Google Scholar 

  • Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122. doi:10.1016/0378-1119(92)90454-W

    Article  CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci 81:1991–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci 103:10352–10357. doi:10.1073/pnas.0601456103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz A, Marín P, González-Jaén MT, Aguilar KGI, Cumagun CJR (2013) Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines. J Sci Food Agric 93:3032–3039. doi:10.1002/jsfa.6136

    Article  CAS  PubMed  Google Scholar 

  • Darken MA, Jensen AL, Shu P (1959) Production of gibberellic acid by fermentation. Appl Microbiol 7:301–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai K, Sullards MC, Allegood J, Wang E, Schmelz EM, Hartl M, Humpf H-U, Liotta DC, Peng Q, Merrill AH Jr (2002) Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta BBA - Mol Cell Biol Lipids 1585:188–192. doi:10.1016/S1388-1981(02)00340-2

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1922) On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 85:87–94. doi:10.2307/2340521

    Article  Google Scholar 

  • Flaherty JE, Pirttilä AM, Bluhm BH, Woloshuk CP (2003) PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microbiol 69:5222–5227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaherty JE, Woloshuk CP (2004) Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl Environ Microbiol 70:2653–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732. doi:10.1021/jf0718906

    Article  CAS  PubMed  Google Scholar 

  • Geissman TA, Verbiscar AJ, Phinney BO, Cragg G (1966) Studies on the biosynthesis of gibberellins from (−)-kaurenoic acid in cultures of Gibberella fujikuroi. Phytochemistry 5:933–947. doi:10.1016/S0031-9422(00)82790-9

    Article  CAS  Google Scholar 

  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP (1988) Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH (2008) Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant-Microbe Interact 21:87–97. doi:10.1094/MPMI-21-1-0087

    Article  CAS  PubMed  Google Scholar 

  • Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review. Environ Toxicol Pharmacol 11:309–320. doi:10.1016/S1382-6689(02)00020-0

    Article  CAS  PubMed  Google Scholar 

  • Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Investig off Publ Am Assoc Vet Lab Diagn Inc 2:217–221

    Article  CAS  Google Scholar 

  • Hübner F, Harrer H, Fraske A, Kneifel S, Humpf H-U (2012) Large scale purification of B-type fumonisins using centrifugal partition chromatography (CPC). Mycotoxin Res 28:37–43. doi:10.1007/s12550-011-0114-7

    Article  PubMed  Google Scholar 

  • Kellerman TS, Marasas WF, Thiel PG, Gelderblom WC, Cawood M, Coetzer JA (1990) Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. Onderstepoort J Vet Res 57:269–275

    CAS  PubMed  Google Scholar 

  • Kim H, Woloshuk CP (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 45:947–953. doi:10.1016/j.fgb.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  • Kohut G, Adám AL, Fazekas B, Hornok L (2009) N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum. Int J Food Microbiol 130:65–69. doi:10.1016/j.ijfoodmicro.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro I, Falavigna C, Galaverna G, Dall’Asta C, Battilani P (2013) Cornmeal and starch influence the dynamic of fumonisin B, A and C production and masking in Fusarium verticillioides and F. proliferatum. Int J Food Microbiol 166:21–27. doi:10.1016/j.ijfoodmicro.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, Oxford, United Kingdom

    Book  Google Scholar 

  • Lukacs Z, Schaper S, Herderich M, Schreier P, Humpf H-U (1996) Identification and determination of fumonisin FB1 and FB2 in corn and corn products by high-performance liquid chromatography-electrospray-ionization tandem mass spectrometry (HPLC-ESI-MS-MS). Chromatographia 43:124–128. doi:10.1007/BF02292939

    Article  CAS  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604. doi:10.1128/MMBR.00015-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasas WFO, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Waes JG, Missmer SA, Cabrera J, Torres O, Gelderblom WCA, Allegood J, Martínez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    CAS  PubMed  Google Scholar 

  • Matić S, Spadaro D, Prelle A, Gullino ML, Garibaldi A (2013) Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice. Int J Food Microbiol 166:515–523. doi:10.1016/j.ijfoodmicro.2013.07.026

    Article  PubMed  Google Scholar 

  • Merrill AH, Sullards MC, Wang E, Voss KA, Riley RT (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michielse CB, Pfannmüller A, Macios M, Rengers P, Dzikowska A, Tudzynski B (2014) The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol 91:472–493. doi:10.1111/mmi.12472

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Studt L, Janevska S, Sieber CMK, Arndt B, Espino JJ, Humpf H-U, Güldener U, Tudzynski B (2015) The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ Microbiol 17:2690–2708. doi:10.1111/1462-2920.12592

    Article  CAS  PubMed  Google Scholar 

  • Montis V, Pasquali M, Visentin I, Karlovsky P, Cardinale F (2013) Identification of a cis-acting factor modulating the transcription of FUM1, a key fumonisin-biosynthetic gene in the fungal maize pathogen Fusarium verticillioides. Fungal Genet Biol 51:42–49. doi:10.1016/j.fgb.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  • Munkvold GP (2003) Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol 41:99–116. doi:10.1146/annurev.phyto.41.052002.095510

    Article  CAS  PubMed  Google Scholar 

  • Musser SM, Gay ML, Mazzola EP, Plattner RD (1996) Identification of a new series of fumonisins containing 3-hydroxypyridine. J Nat Prod 59:970–972. doi:10.1021/np960349t

    Article  CAS  PubMed  Google Scholar 

  • Myung K, Li S, Butchko RAE, Busman M, Proctor RH, Abbas HK, Calvo AM (2009) FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J Agric Food Chem 57:5089–5094. doi:10.1021/jf900783u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson PE (1992) Taxonomy and biology of Fusarium moniliforme. Mycopathologia 117:29–36

    Article  CAS  PubMed  Google Scholar 

  • Niehaus E-M, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M, Güldener U, Tudzynski B, Humpf H-U (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20:1055–1066. doi:10.1016/j.chembiol.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Niehaus E-M, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf H-U, Tudzynski B (2014a) Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS one 9:e103336. doi:10.1371/journal.pone.0103336

    Article  PubMed  PubMed Central  Google Scholar 

  • Niehaus E-M, von Bargen KW, Espino JJ, Pfannmüller A, Humpf H-U, Tudzynski B (2014b) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762. doi:10.1007/s00253-013-5453-1

    Article  CAS  PubMed  Google Scholar 

  • Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458. doi:10.2307/3761403

    Article  Google Scholar 

  • Pavesi G, Mereghetti P, Mauri G, Pesole G (2004) Weeder web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32:W199–W203. doi:10.1093/nar/gkh465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112. doi:10.1006/fgbi.1999.1141

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249. doi:10.1016/S1087-1845(02)00525-X

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RAE (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54:2424–2430. doi:10.1021/jf0527706

    Article  CAS  PubMed  Google Scholar 

  • Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Schmelz EM, Dombrink-Kurtzman MA, Roberts PC, Kozutsumi Y, Kawasaki T, Merrill AH (1998) Induction of apoptosis by fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases. Toxicol Appl Pharmacol 148:252–260. doi:10.1006/taap.1997.8356

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol FG B 49:483–497. doi:10.1016/j.fgb.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  • Seo J-A, Proctor RH, Plattner RD (2001) Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165. doi:10.1006/fgbi.2001.1299

    Article  CAS  PubMed  Google Scholar 

  • Shim WB, Woloshuk CP (1999) Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett 177:109–116

    Article  CAS  PubMed  Google Scholar 

  • Staben C, Jensen B, Singer M, Pollock J, Schechtmann M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newslett 36:79–81

    Google Scholar 

  • Stępień Ł, Waśkiewicz A, Wilman K (2015) Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int J Food Microbiol 193:74–81. doi:10.1016/j.ijfoodmicro.2014.10.020

    Article  PubMed  Google Scholar 

  • Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480. doi:10.1128/AEM.00823-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerell BA, Leslie JF (2011) Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers 50:135–144. doi:10.1007/s13225-011-0132-y

    Article  Google Scholar 

  • Sun G, Wang S, Hu X, Su J, Huang T, Yu J, Tang L, Gao W, Wang J-S (2007) Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit Contam 24:181–185. doi:10.1080/02652030601013471

    Article  CAS  PubMed  Google Scholar 

  • Susca A, Proctor RH, Mulè G, Stea G, Ritieni A, Logrieco A, Moretti A (2010) Correlation of mycotoxin fumonisin B2 production and presence of the fumonisin biosynthetic gene fum8 in Aspergillus niger from grape. J Agric Food Chem 58:9266–9272. doi:10.1021/jf101591x

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Mochizuki N, Nagatomi Y, Toriba A, Hayakawa K (2014) Characterization of fumonisin A-series by high-resolution liquid chromatography-orbitrap mass spectrometry. Toxins 6:2580–2593. doi:10.3390/toxins6082580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tudzynski B, Homann V, Feng B, Marzluf GA (1999) Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet 261:106–114. doi:10.1007/s004380050947

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Kocsubé S, Suri K, Szigeti G, Szekeres A, Varga M, Tóth B, Bartók T (2010) Fumonisin contamination and fumonisin producing black Aspergilli in dried vine fruits of different origin. Int J Food Microbiol 143:143–149. doi:10.1016/j.ijfoodmicro.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  • Visentin I, Montis V, Döll K, Alabouvette C, Tamietti G, Karlovsky P, Cardinale F (2012) Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukaryot Cell 11:252–259. doi:10.1128/EC.05159-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bargen KW, Niehaus E-M, Krug I, Bergander K, Würthwein E-U, Tudzynski B, Humpf H-U (2015) Isolation and structure elucidation of fujikurins A–D: products of the PKS19 Gene Cluster in Fusarium fujikuroi. J Nat Prod 78:1809–1815. doi:10.1021/np5008137

    Article  Google Scholar 

  • Wang T, Stormo GD (2003) Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 19:2369–2380. doi:10.1093/bioinformatics/btg329

    Article  CAS  PubMed  Google Scholar 

  • Ward M, Turner G (1986) The ATP synthase subunit 9 gene of Aspergillus nidulans: sequence and transcription. Mol Gen Genet 205:331–338. doi:10.1007/BF00430447

    Article  CAS  PubMed  Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946. doi:10.1111/j.1365-2958.2009.06695.x

    Article  CAS  PubMed  Google Scholar 

  • Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski B (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol. doi:10.1111/j.1365-2958.2010.07263.x

    PubMed  PubMed Central  Google Scholar 

  • Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475. doi:10.1371/journal.ppat.1003475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, Krull M, Matys V, Michael H, Ohnhäuser R, Prüß M, Schacherer F, Thiele S, Urbach S (2001) The TRANSFAC system on gene expression regulation. Nucleic Acids Res 29:281–283. doi:10.1093/nar/29.1.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55. doi:10.1002/yea.320110107

    Article  CAS  PubMed  Google Scholar 

  • Woloshuk CP, Shim W-B (2013) Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 37:94–109. doi:10.1111/1574-6976.12009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work and the research fellowship of Sarah Rösler were supported by funds of the Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg 1409 (GRK1409, Germany). We thank Henning Harrer, Florian Hübner, and Matthias Behrens for very helpful discussion; Annika Möller-Kerrut for excellent technical assistance; and Melanie Brand for providing FB1. We are very grateful to Brian Williamson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Tudzynski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 3143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösler, S.M., Sieber, C.M.K., Humpf, HU. et al. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi . Appl Microbiol Biotechnol 100, 5869–5882 (2016). https://doi.org/10.1007/s00253-016-7426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7426-7

Keywords

Navigation