Skip to main content
Log in

Characterisation of Yeasts Isolated from Deep Igneous Rock Aquifers of the Fennoscandian Shield

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The diversity of prokaryotes in the groundwater deep below the surface of the Baltic Sea at the Äspö Hard Rock Laboratory (HRL) in southeast Sweden is well documented. In addition, there is some evidence that eukaryotes, too, are present in the deep groundwater at this site, although their origins are uncertain. To extend the knowledge of eukaryotic life in this environment, five yeast, three yeastlike, and 17 mold strains were isolated from Äspö HRL groundwater between 201 and 444 m below sea level. Phenotypic testing and phylogenetic analysis of 18S rDNA sequences of the five yeast isolates revealed their relationships to Rhodotorula minuta and Cryptococcus spp. Scanning and transmission electron microscopy demonstrated that the strains possessed morphological characteristics typical for yeast, although they were relatively small, with an average length of 3 µm. Enumeration through direct counting and most probable number methods showed low numbers of fungi, between 0.01 and 1 cells mL−1, at some sites. Five of the strains were characterized physiologically to determine whether they were adapted to life in the deep biosphere. These studies revealed that the strains grew within a pH range of 4–10, between temperatures of 4°C and 25–30°C, and in NaCl concentrations from 0 to 70 g L−1. These growth parameters suggest a degree of adaptation to the groundwater at Äspö HRL. Despite the fact that these eukaryotic microorganisms may be transient members of the deep biosphere microbial community, many of the observations of this study suggest that they are capable of growing in this extreme environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. DL Balkwill (1989) ArticleTitleNumbers, diversity, and morphological-characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J 7 33–52

    Google Scholar 

  2. ML Berbee DA Carmean K Winka (2000) ArticleTitleRibosomal DNA and resolution of branching order among the ascomycota: how many nucleotides are enough? Mol Phylogenet Evol 17 337–344 Occurrence Handle10.1006/mpev.2000.0835 Occurrence Handle1:CAS:528:DC%2BD3cXptVyguro%3D Occurrence Handle11133188

    Article  CAS  PubMed  Google Scholar 

  3. ML Berbee JW Taylor (1995) ArticleTitleFrom 18S ribosomal sequence data to evolution of morphology among the fungi. Can J Bot 73 S677–S683

    Google Scholar 

  4. T Boekhout (1998) Diagnostic descriptions and key to presently accepted heterobasidiomycetous genera. CP Kurtzman JW Fell (Eds) The Yeasts: A Taxonomic Study. Elsevier Science Publishers BV Amsterdam 627–634

    Google Scholar 

  5. B Bowman J Taylor A Brownlee J Lee S-D Lu T White (1992) ArticleTitleMolecular evolution of the fungi: relationships of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol Biol Evol 9 285–296 Occurrence Handle1:CAS:528:DyaK38XhvFSrtLY%3D Occurrence Handle1560764

    CAS  PubMed  Google Scholar 

  6. DSM, catalogue of strains (1993) DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany

  7. JW Fell (1976) Yeasts in oceanic regions. EBG Jones (Eds) Recent Advances in Aquatic Mycology. Elek Science London 93–124

    Google Scholar 

  8. J Felsenstein (1985) ArticleTitleConfidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783–791

    Google Scholar 

  9. J Felsenstein (1989) ArticleTitlePHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5 164–166

    Google Scholar 

  10. CB Fliermans (1989) ArticleTitleMicrobial life in the terrestrial subsurface of southeastern coastal plain sediments. Haz Waste Haz Mat 6 155–171 Occurrence Handle1:CAS:528:DyaK3cXotlGlsw%3D%3D

    CAS  Google Scholar 

  11. JK Fredrickson TC Onstott (1996) ArticleTitleMicrobes deep inside the earth. Sci Am 275 42–47 Occurrence Handle8701292

    PubMed  Google Scholar 

  12. K Freeman (1970) ArticleTitleInhibition of mitochondrial and bacterial protein synthesis by chloramphenicol. Can J Biochem 48 479 Occurrence Handle1:CAS:528:DyaE3cXkt1elt7c%3D Occurrence Handle4911451

    CAS  PubMed  Google Scholar 

  13. WC Ghiorse DL Balkwill (1983) ArticleTitleEnumeration and morphological characterisation of bacteria indigenous to subsurface environments. Develop Industr Microbiol 24 213–224

    Google Scholar 

  14. WC Ghiorse JT Wilson (1988) ArticleTitleMicrobial ecology of the terrestrial subsurface. Adv Appl Microbiol 33 107–172 Occurrence Handle1:STN:280:BieB1M7ovFw%3D Occurrence Handle3041739

    CAS  PubMed  Google Scholar 

  15. E Gueho L Improvisi R Christen GS Dehoog (1993) ArticleTitlePhylogenetic relationships of Cryptococcus-Neoformans and some related basidiomycetous yeasts determined from partial large subunit ribosomal-RNA sequences. Antonie Van Leeuwenhoek 63 175–189 Occurrence Handle1:CAS:528:DyaK2cXhsFymtbc%3D Occurrence Handle8259834

    CAS  PubMed  Google Scholar 

  16. AN Hagler DG Aheard (1987) Ecology of aquatic yeasts. AH Rose JS Harrison (Eds) The Yeasts. Academic Press London 181–205

    Google Scholar 

  17. SA Haveman K Pedersen (2002) ArticleTitleDistribution of cultivable microorganisms in Fennoscandian Shield groundwater. FEMS Microbiol Ecol 39 129–137 Occurrence Handle10.1016/S0168-6496(01)00210-0 Occurrence Handle1:CAS:528:DC%2BD38XitFaqtL8%3D

    Article  CAS  Google Scholar 

  18. E Hayman H Yokoyama C Chichester K Simpson (1974) ArticleTitleCarotenoid biosynthesis in Rhodotorula glutinis. J Bacteriol 120 1339–1343 Occurrence Handle1:CAS:528:DyaE2MXltl2ksg%3D%3D Occurrence Handle4474162

    CAS  PubMed  Google Scholar 

  19. P Hirsch FEW Eckhardt RJ Palmer Jr (1995) ArticleTitleFungi active in weathering of rock and stone monuments. Can J Bot 73 S1384–90

    Google Scholar 

  20. RE Hungate (1969) ArticleTitleA roll tube method for the cultivation of strict anaerobes. Methods Microbiol 38 117–132

    Google Scholar 

  21. AG Jongmans N van Breemen U Lundström PAW van Hees RD Finlay M Srinivasan T Unestam R Giesler P-A Melkerud M Olsson (1997) ArticleTitleRockeating fungi. Nature 389 682–683 Occurrence Handle10.1038/39493 Occurrence Handle1:CAS:528:DyaK2sXmvVSjtr8%3D

    Article  CAS  Google Scholar 

  22. TH Jukes CR Cantor (1969) Evolution of protein molecules. H Munro (Eds) Mammalian Protein Metabolism. Academic Press New York 21–132

    Google Scholar 

  23. MG Kalyuzhanaya VN Khmelenina S Kotelnikova L Holmquist K Pedersen (1999) ArticleTitle Methylomonas scandinavica sp nov., a new methanotrophic psychrotophic bacterium isolated from deep igneous rock groundwater of Sweden. Syst Appl Microbiol 22 565–572 Occurrence Handle10794145

    PubMed  Google Scholar 

  24. M Kimura (1980) ArticleTitleA simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111–120 Occurrence Handle7463489

    PubMed  Google Scholar 

  25. S Kotelnikova K Pedersen (1998) ArticleTitleDistribution and activity of methanogens and homoacetogens in deep granitic aquifers at Aspo Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 26 121–134 Occurrence Handle10.1016/S0168-6496(98)00028-2 Occurrence Handle1:CAS:528:DyaK1cXjvFOhsL8%3D

    Article  CAS  Google Scholar 

  26. M Laaksoharju EL Tullborg P Wikberg B Wallin J Smellie (1999) ArticleTitleHydrogeochemical conditions and evolution at the Äspö HRL, Sweden. Appl Geochem 14 835–859 Occurrence Handle10.1016/S0883-2927(99)00023-2 Occurrence Handle1:CAS:528:DyaK1MXltFajurc%3D

    Article  CAS  Google Scholar 

  27. MA Lachance WT Starmer (1998) Ecology and yeasts. CP Kurtzman JW Fell (Eds) The Yeasts: A Taxonomic Study. Elsevier Science Amsterdam 21–30

    Google Scholar 

  28. C Lanave G Preparata C Saccone G Serio (1984) ArticleTitleA new method for calculating evolutionary substitution rates. J Mol Evol 20 86–93 Occurrence Handle1:CAS:528:DyaL2cXktF2hsLY%3D Occurrence Handle6429346

    CAS  PubMed  Google Scholar 

  29. EL Madsen WC Ghiorse (1993) Groundwater microbiology: subsurface ecosystem processes. TE Ford (Eds) Aquatic Microbiology, an Ecological Approach. Blackwell Scientific Publications Cambridge, MAs 167–213

    Google Scholar 

  30. EO Morris (1968) ArticleTitleYeasts of marine origin. Oceanogr Mar Biol Ann Rev 6 201–230 Occurrence Handle10.1086/285467

    Article  Google Scholar 

  31. T Nagahama M Hamamoto T Nakase K Horikoshi (1999) ArticleTitle Kluyveromyces nonfermentans sp nov., a new yeast species isolated from the deep sea. Int J Syst Bacteriol 49 1899–1905

    Google Scholar 

  32. T Nagahama M Hamamoto T Nakase K Horikoshi (2001) ArticleTitle Rhodotorula lamellibrachii sp nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami Bay and its phylogenetic analysis. Antonie van Leeuwenhoek 80 317–323 Occurrence Handle10.1023/A:1013043301388 Occurrence Handle1:CAS:528:DC%2BD38XovV2ntw%3D%3D Occurrence Handle11827218

    Article  CAS  PubMed  Google Scholar 

  33. T Nagahama M Hamamoto T Nakase H Takami K Horikoshi (2001) ArticleTitleDistribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie van Leeuwenhoek 80 101–110 Occurrence Handle10.1023/A:1012270503751 Occurrence Handle1:STN:280:DC%2BD38%2FjtVyktg%3D%3D Occurrence Handle11759043

    Article  CAS  PubMed  Google Scholar 

  34. A Ogram W Sun FJ Brockman JK Fredrickson (1995) ArticleTitleIsolation and characterisation of RNA from low-biomass deep subsurface sediments. Appl Environ Microbiol 61 763–768 Occurrence Handle1:STN:280:BymD3s7lvVI%3D Occurrence Handle7574612

    CAS  PubMed  Google Scholar 

  35. FE Palmer DR Emery J Stemmler JT Stanley (1987) ArticleTitleSurvival and growth of microcolonial rock fungi as affected by temperature and humidity. New Phytologist 107 155–162

    Google Scholar 

  36. K Pedersen (1993) ArticleTitleThe deep subterranean biosphere. Earth Sci Rev 34 243–260 Occurrence Handle10.1016/0012-8252(93)90058-F Occurrence Handle1:CAS:528:DyaK2cXhvVGnt7g%3D

    Article  CAS  Google Scholar 

  37. K Pedersen (2000) ArticleTitleExploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185 9–16 Occurrence Handle1:CAS:528:DC%2BD3cXhvV2lsb4%3D Occurrence Handle10731600

    CAS  PubMed  Google Scholar 

  38. K Pedersen (2001) Diversity and activity of micoorganisms in deep igneous rock aquifers of the Fennoscandian Shield. JK Fredrickson M Fletcher (Eds) Subsurface Microbiology and Biogeochemistry. Wiley-Liss New York 97–139

    Google Scholar 

  39. K Pedersen J Arlinger S Ekendahl L Hallbeck (1996) ArticleTitle16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö Hard Rock Laboratory. FEMS Microbiol Ecol 19 249–262 Occurrence Handle10.1016/0168-6496(96)00017-7 Occurrence Handle1:CAS:528:DyaK28XjsVOktb8%3D

    Article  CAS  Google Scholar 

  40. K Pedersen S Ekendahl (1990) ArticleTitleDistribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol 20 37–52

    Google Scholar 

  41. K Pedersen S Ekendahl (1992) ArticleTitleAssimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from Southeastern Sweden deep crystalline bedrock. Microb Ecol 23 1–14 Occurrence Handle1:CAS:528:DyaK38XlsVKqs7g%3D

    CAS  Google Scholar 

  42. K Pedersen L Hallbeck J Arlinger A-C Erlandson N Jahromi (1997) ArticleTitleInvestigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. J Microbiol Methods 30 179–192 Occurrence Handle10.1016/S0167-7012(97)00066-3 Occurrence Handle1:CAS:528:DyaK2sXms1erurc%3D

    Article  CAS  Google Scholar 

  43. Petterson C, Ephraim J, Allard B, Borén H, Characterisation of humic substances from deep groundwaters in granitic bedrock in Sweden. 1990, Available from 8KB, Box 5864, 10248 Stockholm, Sweden: SKB technical report 90-29

  44. E Rades-Rohkol P Hirsch O Fränzle (1979) ArticleTitleNeutron activation analysis for the demonstration of amphibolite rock-weathering activity of a yeast. Appl Environ Microbiol 38 1061–1068

    Google Scholar 

  45. M Richards FR Elliot (1966) ArticleTitleInhibition of yeast growth by streptomycin. Nature 209 536 Occurrence Handle1:CAS:528:DyaF28XmtFOitg%3D%3D Occurrence Handle5919598

    CAS  PubMed  Google Scholar 

  46. KA Seifert BD Wingfield MJ Wingfield (1995) ArticleTitleA critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs. Can J Bot 73 S760–S767

    Google Scholar 

  47. JL Sinclair WC Ghiorse (1989) ArticleTitleDistribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments. Geomicrobiol J 7 15–31

    Google Scholar 

  48. JFT Spencer DM Spencer (1997) Ecology: where yeasts live. JFT Spencer DM Spencer (Eds) Yeasts in Natural and Artificial Habitats. Springer-Verlag Berlin 33–57

    Google Scholar 

  49. A Spurr (1969) ArticleTitleA low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26 31–43 Occurrence Handle1:CAS:528:DyaF1MXkvVahsLc%3D Occurrence Handle4887011

    CAS  PubMed  Google Scholar 

  50. K Sterflinger WE Krumbein (1995) ArticleTitleMultiple stress factors affecting growth of rock-inhabiting black fungi. Bot Acta 108 490–496

    Google Scholar 

  51. O Strunk O Gross B Reichel S May S Hermann B Struckmann M Nonhoff M Lenke A Vilbig T Ludwig A Bode KH Schleifer W Ludwig (1998) ARB: a software environment for sequence data. Department of Microbiology, Technische Universität Müinchen Germany

    Google Scholar 

  52. DL Swofford (1998) PAUP* version 4.0.0 d64 for Macintosh. Sinauer Sunderland, MA

    Google Scholar 

  53. S Thomas-Hall K Watson G Scorzetti (2002) ArticleTitle Cryptococcus statzelliae sp nov and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int J Syst Evol Microbiol 52 2303–2308 Occurrence Handle10.1099/ijs.0.02293-0 Occurrence Handle1:CAS:528:DC%2BD3sXht12ntQ%3D%3D Occurrence Handle12508901

    Article  CAS  PubMed  Google Scholar 

  54. KJ Towner (1992) The genus Acinetobacter. A Balows HG Truper M Dworkin W Harder K-H Schleifer (Eds) The-Prokaryotes. Springer-Verlag New York 3137–3143

    Google Scholar 

  55. P Valente JP Ramos O Leoncini (1999) ArticleTitleSequencing as a tool in yeast molecular taxonomy. Can J Microbiol 45 949–958 Occurrence Handle10.1139/cjm-45-11-949 Occurrence Handle1:CAS:528:DyaK1MXns1GrsLc%3D Occurrence Handle10588043

    Article  CAS  PubMed  Google Scholar 

  56. TJ White T Bruns S Lee JW Taylor (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. Academic Press San Diego

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Margit Fredricksson for SEM pictures, Krystyna Sundqvist for TEM pictures, and Berit Ericsson for valuable help with media preparations in the lab. This study was performed with funds from Carl Tryggers Foundation and the Royal Swedish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekendahl, S., O’Neill, A., Thomsson, E. et al. Characterisation of Yeasts Isolated from Deep Igneous Rock Aquifers of the Fennoscandian Shield . Microb Ecol 46, 416–428 (2003). https://doi.org/10.1007/s00248-003-2008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2008-5

Keywords

Navigation