Skip to main content

Advertisement

Log in

Communities of culturable yeasts and yeast-like fungi in oligotrophic hypersaline coastal waters of the Arabian Gulf surrounding Qatar

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This report is the first investigation of yeast biodiversity from the oligotrophic hypersaline coastal waters of the Arabian Gulf surrounding Qatar. Yeasts and yeast-like fungi, were cultured from seawater sampled at 13 coastal areas surrounding Qatar over a period of 2 years (December 2013–September 2015). Eight hundred and forty-two isolates belonging to 82 species representing two phyla viz., Ascomycota (23 genera) and Basidiomycota (16 genera) were identified by molecular sequencing. The results indicated that the coastal waters of the Qatari oligotrophic marine environment harbor a diverse pool of yeast species, most of which have been reported from terrestrial, clinical and aquatic sources in various parts of the world. Five species, i.e., Candida albicans, C. parapsilosis, C. tropicalis, Pichia kudriavzevii and Meyerozyma guilliermondii (n = 252/842; 30% isolates) are known as major opportunistic human pathogens. Fifteen species belonging to nine genera (n = 498/842; 59%) and 12 species belonging to seven genera (n = 459/842; 55%) are hydrocarbon degrading yeast and pollution indicator yeast species, respectively. Ascomycetous yeasts were predominant (66.38%; 559/842) as compared to their basidiomycetous counterparts (33.6%; 283/842). The most isolated yeast genera were Candida (28%; 236/842) (e.g., C. aaseri, C. boidinii, C. glabrata, C. intermedia, C. oleophila, C. orthopsilosis, C. palmioleophila, C. parapsilosis, C. pseudointermedia, C. rugopelliculosa, C. sake, C. tropicalis and C. zeylanoides), Rhodotorula (12.7%; 107/842), Naganishia (8.4%; 71/842), Aureobasidium (7.4%; 62/842), Pichia (7.3%; 62/842), and Debaryomyces (6.4%; 54/842). A total of eleven yeast species ( n = 38) isolated in this study are reported for the first time from the marine environment. Chemical testing demonstrated that seven out of the 13 sites had levels of total petroleum hydrocarbons (TPH) ranging from 200 to 900 µg/L, whereas 6 sites showed higher TPH levels (> 1000–21000 µg/L). The results suggest that the yeast community structure and density are impacted by various physico-chemical factors, namely total organic carbon, dissolved organic carbon and sulphur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahearn DG, Crow SA (1980) Yeasts from the North Sea and Amoco Cadiz oil. Bot Mar 23: 125–128.

  • Ahearn DG, Crow SA (1986) Fungi and hydrocarbons in the marine environment. The Biology of Marine Fungi. 11–18

  • Al-Ghadban AN, El-Sammak A (2005) Sources, distribution and composition of the suspended sediments, Kuwait Bay, Northern Arabian Gulf. J Arid Environ 60:647–661

    Article  Google Scholar 

  • Al-Ghadban AN, Al-Majed N, Al-Muzaini S (2002) The state of marine pollution in Kuwait: Northern Arabian Gulf. Technology 8:7–26

    Google Scholar 

  • Al-Sarawi MA, Massoud MS, Khader SR (2002) Recent trace metal pollution in bottom sediments of Sulaibikhat Bay, Kuwait. Technology 8:38–50

    Google Scholar 

  • Al-Thani RF, Yasseen BT (2021) Microbial Ecology of Qatar, the Arabian Gulf: Possible Roles of Microorganisms. Front Mar Sci 8:1–23

    Article  CAS  Google Scholar 

  • Amend A, Burgaud G, Cunliffe M, et al (2019) Fungi in the marine environment: Open questions and unsolved problems. MBio10 01189–18

  • Anand, A., Zeyara, A., Al Malaki, A., et al. (2016). Isolation and identification of potentially pathogenic vibrio species from qatari coastal seawaters, in Proceedings of the Qatar Foundation Annual Research Conference Proceedings Volume 2016 EESP2323 Hamad bin Khalifa University Press (HBKU Press), Ar Rayyan

  • Azovsky AI (2011) Species–area and species–sampling effort relationships: disentangling the effects. Ecograph 34:18–30

    Article  Google Scholar 

  • Boekhout T, Fonseca Á, Sampaio JP, Bandoni RJ, Fell JW, Kwon-Chung KJ (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. The Yeasts. Elsevier, pp 1339–1372. https://doi.org/10.1016/B978-0-444-52149-1.00100-2

    Chapter  Google Scholar 

  • Boekhout T, Fotedar R, Kolecka A, Fell J (2016) March. Fungal diversity in the Arabian Gulf surrounding Qatar: new species of yeasts and molds. In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press) EEPP2198

  • Bogusławska-Wąs E, Dąbrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203:451–458

    Article  PubMed  Google Scholar 

  • Botha A (2006) Yeast in soil. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240

    Chapter  Google Scholar 

  • Boz DT, Yalçın HT, Çorbacı CC et al (2015) Screening and molecular characterization of polycyclic aromatic hydrocarbons degrading yeasts/Polisiklik aromatik hidrokarbonları parçalayan mayaların taranması ve moleküler karakterizasyonu. Turkish J Biochem 40:105–110

    Google Scholar 

  • Brandao E, Turchetti B, Diolaiuti G et al (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  CAS  Google Scholar 

  • Brandão LR, Libkind D, Vaz AB et al (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  CAS  PubMed  Google Scholar 

  • Brook MC, Al Shoukri S, Amer KM et al (2006) Physical and environmental setting of the Arabian Peninsula and surrounding seas. Policy Perspectives for Ecosystem and Water Management in the Arabia Peninsula. UNESCO Doha and United Nations University, Hamilton, Ontario

  • Buck JD (1977) Candida albicans In Bacterial indicators/health hazards associated with water. ASTM International, Pennsylvania

    Google Scholar 

  • Buck JD, Bubucis PM, Combs TJ (1977) Occurrence of human-associated yeasts in bivalve shellfish from Long Island Sound. Appl Environ Microbiol 33:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I et al (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanica Marina. https://doi.org/10.1515/BOT.2005.007

    Article  Google Scholar 

  • Buzzini P, Turk M, Perini L et al (2017) Yeasts in polar and subpolar habitats in yeasts in natural ecosystems diversity. Springer, Cham, pp 331–365

    Google Scholar 

  • Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35:487–497

    Article  CAS  PubMed  Google Scholar 

  • Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North Am Lake Manag Soc 96:305

    Google Scholar 

  • Chatting M, Smyth D, Al-Maslamani I et al (2018) Nesting ecology of hawksbill turtles, Eretmochelys imbricata, in an extreme environmental setting. PloS one 13:e0203257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi ZM, Liu G, Zhao S et al (2010) Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 86:1227–1241

    Article  CAS  PubMed  Google Scholar 

  • Coelho MA, Almeida JM, Martins IM et al (2010) The dynamics of the yeast community of the Tagus river estuary: testing the hypothesis of the multiple origins of estuarine yeasts. Antonie Van Leeuwenhoek 98:331–342

    Article  PubMed  Google Scholar 

  • de Almeida JM (2005) Yeast community survey in the Tagus estuary. FEMS Microbiol Ecol 53:295–303

    Article  CAS  PubMed  Google Scholar 

  • De Leo F, Giudice AL, Alaimo C et al (2019) Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea. Extremophiles 23:9–17

    Article  CAS  PubMed  Google Scholar 

  • Deak T (2006) Environmental factors influencing yeasts. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 155–174

    Chapter  Google Scholar 

  • Diaz-Munoz G, Montalvo-Rodriguez R (2005) Halophilic Black Yeast Hortaea werneckii in the Cabo Rojo Solar Salterns: its first record for this extreme environment in Puerto Rico. Carib J Sci 41:360–365

    Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW et al (2005) APHA: standard methods for the examination of water and wastewater, Centennial. APHA, AWWA, WEF, Washington

    Google Scholar 

  • El Gammal MAM, Nageeb M, Al-Sabeb S (2017) Phytoplankton abundance in relation to the quality of the coastal water–Arabian Gulf, Saudi Arabia. Egypt J Aquat Res 43:275–282

    Article  Google Scholar 

  • Fell JW (1961) A new species of Saccharomyces isolated from a subtropical estuary. Antonie Van Leeuwenhoek 27:27–30

    Article  CAS  PubMed  Google Scholar 

  • Fell JW (1976) Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 93–124

    Google Scholar 

  • Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 91–102

    Chapter  Google Scholar 

  • Fell JW, van Uden N (1963) Yeasts in marine environments. In: Oppenheimer CH (ed) Symposium on marine microbiology. Thomas, Springfield, pp 329–340

    Google Scholar 

  • Fell JW, Ahearn DG, Meyers SP et al (1960) Isolation of yeasts from Biscayne Bay, Florida and adjacent benthic areas 1, 2. Limnol Oceanogr 5:366–371

    Article  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  • Fell JW, Statzell-Tallman A, Scorzetti G et al (2011) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie Van Leeuwenhoek 99:533–549

    Article  PubMed  Google Scholar 

  • Fonseca Á, Sampaio JP, Inácio J, Fell JW (2000) Emendation of the basidiomycetous yeast genus Kondoa and the description of Kondoa aeria sp. nov. Antonie Van Leeuwenhoek 77:293–302

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Stoeck T, Filker S et al (2016) Description of the halophile Euplotes qatarensis nov. species (Ciliophora, Spirotrichea, Euplotida) isolated from the hypersaline Khor Al-Adaid Lagoon in Qatar. J Eukaryot Microbiol 63:578–590

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2018a) Naganishia qatarensis sp. nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Microbiol 68:2924–2929

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Kolecka A, Boekhout T, Fell JW, Al-Malki A, Zeyara A, Marri MA (2018) Fungal diversity of the hypersaline Inland Sea in Qatar. Botanica Marina 61(6):595–609. https://doi.org/10.1515/bot-2018-0048

    Article  CAS  Google Scholar 

  • Fotedar R, Fell JW, Boekhout T, Kolecka A et al (2019a) Cystobasidium halotolerans sp. nov., a novel basidiomycetous yeast species isolated from the Arabian Gulf. Int J Syst Evol Microbiol 69:839–845

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2019b) Kondoa qatarensis fa, sp. nov., a novel yeast species isolated from marine water in Qatar. Int J Syst Evol Microbiol 69:486–492

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Sandoval-Denis M, Kolecka A, Zeyara A et al (2019c) Toxicocladosporium aquimarinum sp. nov. and Toxicocladosporium qatarense sp. nov., isolated from marine waters of the Arabian Gulf surrounding Qatar. Int J Syst Evol Microbiol 69:2992–3000

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A et al (2020a) Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 70:130–4138

    Article  CAS  Google Scholar 

  • Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A et al (2020b) Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 70:4130–4138

    Article  CAS  PubMed  Google Scholar 

  • Fotedar Rashmi, Sankaranarayanan Krithivasan, Caldwell Matthew E, Zeyara Aisha et al (2021) Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar. Antonie van Leeuwenhoek 114(8):1181–1193. https://doi.org/10.1007/s10482-021-01587-7

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Boekhout T, Houbraken J (2014) Aspergillus salwaensis, A novel ochratoxin producing species from Qatar. In Qatar Foundation Annual Research Conference Proceedings Volume 2014 Issue 1 (Vol. 2014, No. 1, p. EEPP0094). Hamad bin Khalifa University Press (HBKU Press).

  • Fotedar, R. (2013) Identification of bacteria from the marine environment surrounding Qatar. In Proceedings of the Qatar Foundation Annual Research Forum Proceedings Volume 2013 EEP-074 (Ar Rayyan: Hamad bin Khalifa University Press (HBKU Press)). https://doi.org/10.5339/qfarf.2013.EEP-074

  • Friedman DZ, Schwartz IS (2019) Emerging fungal infections: new patients, new patterns, and new pathogens. J Fungi 5:67

    Article  CAS  Google Scholar 

  • Gargouri B, Mhiri N, Karray F et al (2015a) Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res Int 2015:929424. https://doi.org/10.1155/2015/929424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166:371–382

    Article  CAS  PubMed  Google Scholar 

  • Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S (2015) Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. BioMed Res Int 3:929424

    Google Scholar 

  • Gostinčar C, Grube MDe Hoog S, Zalar P, Gunde-Cimerman N (2009) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Life in extreme environments. Springer, Dordrecht, pp 177–185

    Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitas A (2005) Halotolerant and halophilic fungi. Biodiversity of Fungi: Their Role in Human Life (Deshmukh SK & Rai MK, eds)

  • Gunde-Cimerman N, Oren A, Plemenitaš A, eds (2006) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya (Vol. 9). Springer Science & Business Media

  • Hagler AN (2006) Yeasts as indicators of environmental quality. In: Péter Gábor, Rosa Carlos (eds) Biodiversity and ecophysiology of yeasts. Springer-Verlag, Berlin, pp 515–532. https://doi.org/10.1007/3-540-30985-3_21

    Chapter  Google Scholar 

  • Hagler AN, Mendonça-Hagler LC (1981) Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl Environ Microbiol 41:173–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagler AN Ahearn DG (1987) Ecology of aquatic yeasts. In: (A.H. Rose and J.S. Harrison, eds.) The yeasts, Vol 2, Yeasts and the Environment. Academic Press, London 181–205

  • Hassett BT, Vonnahme TR, Xuefeng Peng EB, Jones G, Heuzé C (2020) Global diversity and geography of planktonic marine fungi. Botanica Marina 63(2):121–139. https://doi.org/10.1515/bot-2018-0113

    Article  CAS  Google Scholar 

  • Hinzelin F, Lectard P, Pelt JM (1979) Yeast ecology in both fluvial and saline continental ecosystems [France; Lorraine, Moselle basin, pollution]. Revue de Mycologie (France).

  • Jones EG (2000) Marine fungi: some factors influencing biodiversity. Fung Divers 4:53–73

    Google Scholar 

  • Jones EG, Suetrong S, Sakayaroj J, Bahkali AH et al (2015) Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Jones EG, Pang KL, Abdel-Wahab MA, Scholz B et al (2019) An online resource for marine fungi. Fungal Divers 96:347–433

    Article  Google Scholar 

  • Kathiresan K, Alikunhi NM, Subramanian M (2012) Yeasts in marine and estuarine environments. J Yeast Fungal Res 3:74–82

    Google Scholar 

  • Kock N, Lynn G (2012) Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J Assoc Inf Syst 13:546–580

  • Kurtzman CP (2011) Discussion of teleomorphic and anamorphic ascomycetous yeasts and yeast-like taxa. The yeasts. Elsevier, pp 293–307. https://doi.org/10.1016/B978-0-444-52149-1.00013-6

    Chapter  Google Scholar 

  • Kurtzman C, Fell JW, Boekhout T (eds) (2011) The yeasts: a taxonomic study. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Pichia EC, Hansen emend. Kurtzman (1998) In Kurtzman CP, Fell JW. (eds.) The Yeasts: A Taxonomic Study, 4th ed, Elsevier, Amsterdam 73–352

  • Kutty SN, Philip R (2008) Marine yeasts—a review. Yeast 25:v465-483

    Article  CAS  Google Scholar 

  • Libkind D, Brizzio S, Ruffini A et al (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Buzzini P, Turchetti B, Rosa CA (2017) Yeasts in continental and seawater. Yeasts in natural ecosystems: diversity. Springer, Cham, pp 1–61

    Google Scholar 

  • Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015a) Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M et al (2015b) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Loganathana K, Al Sulaitia HA, Bukharib SJ, Farda AK et al (2019) Distribution of salinity and trace elements in surface seawater of the Arabian Gulf surrounding the State of Qatar. Desalin Water Treat 143:102–110

    Article  CAS  Google Scholar 

  • Maciel NO, Johann S, Brandão LR et al (2019) Occurrence, antifungal susceptibility, and virulence factors of opportunistic yeasts isolated from Brazilian beaches. Mem Inst Oswaldo Cruz 14:114

    Google Scholar 

  • Massoud MS, Al-Abdali F, Al-Ghadban AN (1998) The status of oil pollution in the Arabian Gulf by the end of 1993. Environ Int 24:11–22

    Article  CAS  Google Scholar 

  • Medeiros AO, Kohler LM, Hamdan JS, Missagia BS et al (2008) Diversity and antifungal susceptibility of yeasts from tropical freshwater environments in Southeastern Brazil. Water Res 42:3921–3929

    Article  CAS  PubMed  Google Scholar 

  • Mnge P, Okeleye BI, Vasaikar SD, Apalata T (2017) Species distribution and antifungal susceptibility patterns of Candida isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa. Braz J Med Biol Res 15:50

    Google Scholar 

  • Moges B, Bitew A, Shewaamare A (2016) Spectrum and the in vitro antifungal susceptibility pattern of yeast isolates in Ethiopian HIV patients with oropharyngeal candidiasis. Int J Microbiol. https://doi.org/10.1155/2016/3037817

    Article  PubMed  PubMed Central  Google Scholar 

  • Mokhtarnejad L, Arzanlou M, Babai-Ahari A, Di Mauro S et al (2016) Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park. Iran Extremophiles 20:915–928

    Article  CAS  PubMed  Google Scholar 

  • Monapathi ME, Bezuidenhout CC, Rhode OH (2017) Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers. Water Sci Technol 75:1319–1331

    Article  CAS  PubMed  Google Scholar 

  • Monapathi ME, Bezuidenhout CC, James Rhode OH (2020) Aquatic yeasts: diversity, characteristics and potential health implications. J Water Health 18:91–105

    Article  PubMed  Google Scholar 

  • Monapathi M, Bezuidenhout C, Rhode O (2020b) Physico-chemical parameters and culturable yeast diversity in surface water: a consequence of pollution. Water SA 46:593–601

    CAS  Google Scholar 

  • Montes de Oca R, Salem AZ, Kholif AE et al (2016) Yeast: description and structure. Yeast Addit Anim Prod 2016:4–13

    Google Scholar 

  • MOOPAM (2010) Manual of oceanographic observation and pollutant analyses methods, 4th edn. ROPME Publishing, kuwait

    Google Scholar 

  • Nagahama T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 241–262

    Chapter  Google Scholar 

  • Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471

    Article  Google Scholar 

  • Naser HA (2014) Marine ecosystem diversity in the Arabian Gulf: threats and conservation. In: Grillo Oscar (ed) Biodiversity: the dynamic balance of the planet. InTech. https://doi.org/10.5772/57425

    Chapter  Google Scholar 

  • Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R (2019) Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Sci Rep 9:1–13

    Article  CAS  Google Scholar 

  • Noori R, Tian F, Berndtsson R, Abbasi MR et al (2019) Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PLoS ONE 14:0212790

    Article  CAS  Google Scholar 

  • Norkrans B (1966) Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392

    Article  Google Scholar 

  • Opulente DA, Langdon QK, Buh KV, Haase MA et al (2019) Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res 19:032

    Article  CAS  Google Scholar 

  • Overton EB, Ashton BM, Miles MS (2004) Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northen Central Gulf of Mexico shelf sediments. Mar Pollut Bull 49:557–563

    Article  CAS  PubMed  Google Scholar 

  • Péter G, Takashima M, Čadež N (2017) Yeast habitats: different but global. Yeasts in natural ecosystems: ecology. Springer, Cham, pp 39–71

    Chapter  Google Scholar 

  • PrasannaKumar C, Velmurugan S, Subramanian K, Pugazhvendan SR et al (2020) DNA barcoding analysis of more than 1000 marine yeast isolates reveals previously unrecorded species. BioRxiv

  • Pucci G, Tiedemann MC, Acuña A, Pucci O (2011) Change in bacterial diversity after oil spill in Argentina. Importance Biol Interact Stud Biodivers 1:91–108

    Google Scholar 

  • Quigg A, Al-Ansi M, Al Din NN, Wei CL et al (2013) Phytoplankton along the coastal shelf of an oligotrophic hypersaline environment in a semi-enclosed marginal sea: Qatar (Arabian Gulf). Cont Shelf Res 60:1–16

    Article  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T et al (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Richer R (2008) Conservation in Qatar: impacts of increasing industrialization. CIRS Occasional Paper 2, Doha, Qatar: Center for International and Regional Studies

  • Richer R (2009) Conservation in Qatar: impacts of increasing industrialization. CIRS Occasional Paper 2, Doha, Qatar: Center for International and Regional Studies

  • Rosa CA, Resende MA, Barbosa FA, Morais PB et al (1995) Yeast diversity in a mesotrophic lake on the karstic plateau of Lagoa Santa, MG-Brazil. Hydrobiologia 308:103–108

    Article  Google Scholar 

  • Sampaio JP (2011) Rhodotorula Harrison (1928) in the yeasts. Elsevier, Amsterdam

    Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    Article  CAS  PubMed  Google Scholar 

  • Sheppard C, Al-Husiani M, Al-Jamali F, Al-Yamani F et al (2010) The Gulf: a young sea in decline. Mar Pollut Bull 60:13–38

    Article  CAS  PubMed  Google Scholar 

  • Simard RE, Blackwood AC (1971a) Ecological studies on yeasts in the St Lawrence River. Can J Microbiol 17:353–357

    Article  CAS  PubMed  Google Scholar 

  • Simard RE, Blackwood AC (1971b) Yeasts from the St Lawrence River. Can J Icrobiol 17:197–203

    Article  CAS  Google Scholar 

  • Sláviková E, Vadkertiová R (1997) Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Antonie Van Leeuwenhoek 72:77–80

    Article  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R, Kocková-Kratochvílová A (1992) Yeasts isolated from artificial lake waters. Can J Microbiol 38:1206–1209

    Article  Google Scholar 

  • Smith R, Purnama A, Al-Barwani HH (2007) Sensitivity of hypersaline Arabian Gulf to seawater desalination plants. Appl Math Model 31:2347–2354

    Article  Google Scholar 

  • Spencer JFT, Spencer DM (1997) Ecology: where yeasts live. In: Spencer John F. T, Spencer Dorothy M (eds) Yeasts in natural and artificial habitats. Springer, Berlin, pp 33–58. https://doi.org/10.1007/978-3-662-03370-8_4

    Chapter  Google Scholar 

  • Stavrou AA, Lackner M, Lass-Flörl C, Boekhout T (2019) The changing spectrum of Saccharomycotina yeasts causing candidemia: phylogeny mirrors antifungal susceptibility patterns for azole drugs and amphothericin B. FEMS Yeast Res 19:037

    Article  CAS  Google Scholar 

  • Stielow JB, Lévesque CA, Seifert KA, Meyer W et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia Mol Phylogeny Evol Fungi 35(1):242–263. https://doi.org/10.3767/003158515X689135

    Article  CAS  Google Scholar 

  • Tanghe A, Prior B, Thevelein JM (2006) Yeast responses to stresses. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 175–195

    Chapter  Google Scholar 

  • Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46

    Article  Google Scholar 

  • Uddin S, Gevao B, Al-Ghadban AN, Nithyanandan M et al (2012) Acidification in Arabian Gulf-Insights from pH and temperature measurements. J Environ Monit 14:1479–1482

    Article  CAS  PubMed  Google Scholar 

  • Uetake J, Yoshimura Y, Nagatsuka N, Kanda H (2012) Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). FEMS Microbiol Ecol 82:279–286

    Article  CAS  PubMed  Google Scholar 

  • Van Wyk DA, Bezuidenhout CC, Rhode OH (2012) Diversity and characteristics of yeasts from water sources in the North West Province, South Africa. Water Sci Technol Water Supply 12:422–430

    Article  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visagie CM, Varga J, Houbraken J, Meijer M et al (2014) Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud Mycol 78:1–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu D, Groenewald M, Szöke S, Cardinali G et al (2016) DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 85:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QM, Yurkov AM, Lumbsch HT, Leavitt SD et al (2015a) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    Article  PubMed  Google Scholar 

  • Wang QM, Groenewald M, Takashima M, Theelen B et al (2015b) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53

    Article  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. PCR Protocols: A guide to Methods and Applications, 315–322

  • Zajc J, Zalar P, Gunde-Cimerman N (2017) Yeasts in hypersaline habitats. Yeasts in natural ecosystems: diversity. Springer, Cham, pp 293–329

    Chapter  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Botanica Marina. https://doi.org/10.1515/BOT.2005.042

    Article  Google Scholar 

  • Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. PNAS 109:13022–13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zur morphologie, biologie und systematik der kahmpilze, der Monilia candida Hansen und des soorerregers. G. Fischer

Download references

Acknowledgements

This work was supported by a research grant (NPRP 6-647-1-127) from the Qatar National Research Fund (a member of Qatar Foundation) to Dr. Rashmi Fotedar, Ministry if Municipality and Environment, Doha, Qatar, Dr Teun Boekhout, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, Prof Jack Fell, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, Florida, USA and Dr. Sayed J. Bukhari, Ministry of Municipality and Environment, Doha, Qatar.

Author information

Authors and Affiliations

Authors

Contributions

RF, TB, JWF designed research and project outline. JWF advised on the sampling and culturing techniques. AAM, SJB, MAM, EJF, RF, performed collection, GIS mapping and physio-chemical analysis. RF, AZ, AAM, performed the isolation of yeast from marine water, and purification so yeast isolates. AK and TB did ITS and D1/D2 LSU ribosomal DNA analysis and phenotyping grouping of isolates. MC did the statistical analysis RF and MC performed the data analysis and RF deposited the ITS and D1/D2 LSU ribosomal DNA sequences in the GenBank database. RF, TB, JWF drafted the MS. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Rashmi Fotedar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 7352 KB)

Supplementary file2 (DOCX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotedar, R., Chatting, M., Kolecka, A. et al. Communities of culturable yeasts and yeast-like fungi in oligotrophic hypersaline coastal waters of the Arabian Gulf surrounding Qatar. Antonie van Leeuwenhoek 115, 609–633 (2022). https://doi.org/10.1007/s10482-022-01722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01722-y

Keywords

Navigation