Skip to main content
Log in

The functional significance of velocity storage and its dependence on gravity

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Research in the vestibular field has revealed the existence of a central process, called ‘velocity storage’, that is activated by both visual and vestibular rotation cues and is modified by gravity, but whose functional relevance during natural motion has often been questioned. In this review, we explore spatial orientation in the context of a Bayesian model of vestibular information processing. In this framework, deficiencies/ambiguities in the peripheral vestibular sensors are compensated for by central processing to more accurately estimate rotation velocity, orientation relative to gravity, and inertial motion. First, an inverse model of semicircular canal dynamics is used to reconstruct rotation velocity by integrating canal signals over time. However, its low-frequency bandwidth is limited to avoid accumulation of noise in the integrator. A second internal model uses this reconstructed rotation velocity to compute an internal estimate of tilt and inertial acceleration. The bandwidth of this second internal model is also restricted at low frequencies to avoid noise accumulation and drift of the tilt/translation estimator over time. As a result, low-frequency translation can be erroneously misinterpreted as tilt. The time constants of these two integrators (internal models) can be conceptualized as two Bayesian priors of zero rotation velocity and zero linear acceleration, respectively. The model replicates empirical observations like ‘velocity storage’ and ‘frequency segregation’ and explains spatial orientation (e.g., ‘somatogravic’) illusions. Importantly, the functional significance of this network, including velocity storage, is found during short-lasting, natural head movements, rather than at low frequencies with which it has been traditionally studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It is so because the acceleration of the endolymph in space is due to the friction between the endolymph and the canals. This friction is proportional to the difference in velocity between the canal and the endolymph, which is what is reported by the canal. Therefore, a perfect integration of the sensory signal of the canals yields a signal which is proportional to endolymph velocity in space.

References

  • Angelaki DE (1998) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses to translation. J Neurophysiol 80:680–695

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJ (1994) Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. J Neurophysiol 71:1222–1249

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJ (1995a) Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol 73:1729–1751

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJ (1995b) Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 73:1716–1720

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJ (1996a) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation. J Neurophysiol 75:2405–2424

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJ (1996b) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity. J Neurophysiol 75:2425–2440

    PubMed  CAS  Google Scholar 

  • Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19:316–327

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Merfeld DM, Hess BJ (2000) Low-frequency otolith and semicircular canal interactions after canal inactivation. Exp Brain Res 132:539–549

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430:560–564

    Article  PubMed  CAS  Google Scholar 

  • Benson A, Bodin M (1966a) Interaction of linear and angular accelerations on vestibular receptors in man. Aerospace Med 37:144–154

    PubMed  CAS  Google Scholar 

  • Benson A, Bodin M (1966b) Effect of orientation to the gravitational vertical on nystagmus following rotation about a horizontal axis. Acta Otolaryngol 7:1136–1140

    Google Scholar 

  • Borah J, Young LR, Curry RE (1988) Optimal estimator model for human spatial orientation. Ann N Y Acad Sci 545:51–73

    Article  PubMed  CAS  Google Scholar 

  • Bos JE, Bles W (2002) Theoretical considerations on canal-otolith interaction and an observer model. Biol Cybern 86:191–207

    Article  PubMed  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344

    PubMed  CAS  Google Scholar 

  • Cohen B, Suzuki JI, Raphan T (1983) Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions. Brain Res 276:159–164

    Article  PubMed  CAS  Google Scholar 

  • Correia M, Guedry F (1966) Modification of vestibular responses as a function of rate of rotation about an earth-horizontal axis. Acta Otolaryngol 62:297–308

    Article  PubMed  CAS  Google Scholar 

  • Dai M, Raphan T, Cohen B (1991) Spatial orientation of the vestibular system: dependence of optokinetic after-nystagmus on gravity. J Neurophysiol 66:1422–1439

    PubMed  CAS  Google Scholar 

  • Darlot C, Denise P, Droulez J, Cohen B, Berthoz A (1988) Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73:91–105

    Article  PubMed  CAS  Google Scholar 

  • Denise P, Darlot C, Droulez J, Cohen B, Berthoz A (1988) Motion perceptions induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73:106–114

    Article  PubMed  CAS  Google Scholar 

  • Droulez J, Perez VC (1993) Application of the coherence scheme to the multisensory fusion problem. In: Berthoz A (ed) Multisensory control of movement. Oxford University Press, Oxford, pp 485–501

    Google Scholar 

  • Einstein A (1907) Uber das Relativitatsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4:411–462

    Google Scholar 

  • Fernández C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    PubMed  Google Scholar 

  • Fetter M, Heimberger J, Black R, Hermann W, Sievering F, Dichgans J (1996) Otolith-semicircular canal interaction during postrotatory nystagmus in humans. Exp Brain Res 108:463–472

    Article  PubMed  CAS  Google Scholar 

  • Furman J, Koizuka I (1994) Reorientation of poststimulus nystagmus in tilted humans. J Vestib Res 4:421–428

    PubMed  CAS  Google Scholar 

  • Gizzi MS, Harper HW (2003) Suppression of the human vestibulo-ocular reflex by visual fixation or forced convergence in the dark, with a model interpretation. Curr Eye Res 26:281–290

    Article  PubMed  Google Scholar 

  • Glasauer S, Merfeld DM (1997) Modelling three-dimensional vestibular responses during complex motion stimulation. In: Fetter M, Haslwanter T, Misslisch H (eds) Three-dimensional kinematics of eye head and limb movements. Harwood academic, Amsterdam, pp 387–398

    Google Scholar 

  • Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660

    PubMed  CAS  Google Scholar 

  • Graybiel A (1952) Oculogravic illusion. Arch Ophthal 48:605–615

    CAS  Google Scholar 

  • Graybiel A, Clark B (1965) Validity of the oculogravic illusion as a specific indicator of otolith function. Aerospace Med 36:1173–1181

    Google Scholar 

  • Graybiel A, Johnson W, Money K, Malcolm R, Jennings G (1979) Oculogravic illusion in response to straight-ahead acceleration of CF-104 aircraft. Aviat Space Environ Med 50:382–386

    PubMed  CAS  Google Scholar 

  • Green AM, Angelaki DE (2004) An integrative neural network for detecting inertial motion and head orientation. J Neurophysiol 92:905–925

    Article  PubMed  Google Scholar 

  • Green AM, Angelaki DE (2010) Internal models and neural computation in the vestibular system. Exp Brain Res 200:197–222

    Article  PubMed  Google Scholar 

  • Guedry F (1965) Orientation of the rotation-axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60:30–48

    Article  PubMed  Google Scholar 

  • Harris L (1987) Vestibular and optokinetic eye movements evoked in the cat by rotation about a tilted axis. Exp Brain Res 66:522–532

    Article  PubMed  CAS  Google Scholar 

  • Haslwanter T, Jaeger R, Mayr S, Fetter M (2000) Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp Brain Res 134:96–106

    Article  PubMed  CAS  Google Scholar 

  • Hess BJ, Angelaki DE (1993) Angular velocity detection by head movements orthogonal to the plane of rotation. Exp Brain Res 95:77–83

    Article  PubMed  CAS  Google Scholar 

  • Hess BJ, Angelaki DE (1995) Inertial representation of visual and vestibular self-motion signals. In: Mergner T, Hlavacka F (eds) Multisensory Control of Posture. Plenum Press, New York, pp 183–190

    Google Scholar 

  • Hess BJ, Angelaki DE (1997) Inertial vestibular coding of motion: concepts and evidence. Curr Opin Neurobiol 7:860–866

    Article  PubMed  CAS  Google Scholar 

  • Hess BJ, Jaggi-Schwarz K, Misslisch H (2005) Canal-otolith interactions after off-vertical axis rotations. II. Spatiotemporal properties of roll and pitch postrotatory vestibuloocular reflexes. J Neurophysiol 93:1633–1646

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  Google Scholar 

  • Jaggi-Schwarz K, Misslisch H, Hess BJ (2000) Canal-otolith interactions after off-vertical axis rotations I. Spatial reorientation of horizontal vestibuloocular reflex. J Neurophysiol 83:1522–1535

    PubMed  CAS  Google Scholar 

  • Kushiro K, Dai M, Kunin M, Yakushin SB, Cohen B, Raphan T (2002) Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys. J Neurophysiol 88:2445–2462

    Article  PubMed  Google Scholar 

  • Laurens J (2006) modelisation bayesienne de interactions visuo-vestibulaires. Dissertation, Université Pierre et Marie Curie (Paris 6)

  • Laurens J, Droulez J (2007) Bayesian processing of vestibular information. Biol Cybern 96:389–404

    Article  PubMed  Google Scholar 

  • Laurens J, Droulez J (2008) Bayesian modelling of visuo-vestibular interactions. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems. Springer, New York, pp 279–300

    Chapter  Google Scholar 

  • Laurens J, Straumann D, Hess BJ (2010) Processing of angular motion and gravity information through an internal model. J Neurophysiol 104:1370–1381

    Article  PubMed  Google Scholar 

  • MacNeilage PR, Ganesan N, Angelaki DE (2008) Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. J Neurophysiol 100:2981–2996

    Article  PubMed  Google Scholar 

  • Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Handbook of Sensory Physiology. Springer, Berlin, pp 493–580

    Google Scholar 

  • Merfeld DM (1995) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106:123–134

    Article  PubMed  CAS  Google Scholar 

  • Merfeld DM, Young LR, Oman CM, Shelhamer MJ (1993a) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3:141–161

    PubMed  CAS  Google Scholar 

  • Merfeld DM, Young LR, Paige G, Tomko DL (1993b) Three dimensional eye movements of squirrel monkeys following postrotatory tilt. J Vestib Res 3:123–139

    PubMed  CAS  Google Scholar 

  • Merfeld DM, Zupan LH, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618

    Article  PubMed  CAS  Google Scholar 

  • Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood SJ (2005) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during Translation and Tilt. J Neurophysiol 94:186–198

    Article  PubMed  Google Scholar 

  • Mergner T, Glasauer S (1999) A simple model of vestibular canal-otolith signal fusion. Ann N Y Acad Sci 871:430–434

    Article  PubMed  CAS  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Supp 392:1–44

    CAS  Google Scholar 

  • Paige G, Seidman S (1999) Characteristics of the VOR in response to linear acceleration. Ann N Y Acad Sci 871:123–135

    Article  PubMed  CAS  Google Scholar 

  • Paige G, Tomko DL (1991a) Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol 65:1170–1182

    PubMed  CAS  Google Scholar 

  • Paige G, Tomko DL (1991b) Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations. J Neurophysiol 65:1183–1196

    PubMed  CAS  Google Scholar 

  • Poon C, Merfeld DM (2005) Internal models: the state of the art. (Editorial for special issue: Sensory integration, state estimation, and motor control in the brain: role of internal models) Journal of Neural Eng 2

  • Raphan T, Cohen B (1985) Velocity storage and the ocular response to multidimensional vestibular stimuli. Rev Oculomotor Res 1:123–143

    CAS  Google Scholar 

  • Raphan T, Cohen B (2002) The vestibulo-ocular reflex in three dimensions. Exp Brain Res 145:1–27

    Article  PubMed  Google Scholar 

  • Raphan T, Sturm D (1991) Modelling the spatiotemporal organization of velocity storage in the vestibuloocular reflex by optokinetic studies. J Neurophysiol 66:1410–1421

    PubMed  CAS  Google Scholar 

  • Raphan T, Cohen B, Matsuo V (1977) A velocity storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier, Amsterdam, pp 37–47

    Google Scholar 

  • Raphan T, Cohen B, Henn V (1981) Effects of gravity on rotatory nystagmus in monkeys. Ann N Y Acad Sci 374:44–55

    Article  PubMed  CAS  Google Scholar 

  • Raphan T, Cohen B, Suzuki JI, Henn V (1983) Nystagmus generated by sinusoidal pitch while rotating. Brain Res 276:165–172

    Article  PubMed  CAS  Google Scholar 

  • Reymond G, Droulez J, Kemeny A (2002) Visuovestibular perception of self-motion modeled as a dynamic optimization process. Biol Cybern 87:301–314

    Article  PubMed  Google Scholar 

  • Robinson D (1977) Vestibular and optokinetic symbiosis: an example of explaining by modeling. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier, Amsterdam, pp 49–58

    Google Scholar 

  • Seidman S, Paige G (1996) Perception and eye movement during low-frequency centripetal acceleration. Ann N Y Acad Sci 781:693–695

    Article  PubMed  CAS  Google Scholar 

  • Seidman S, Telford L, Paige G (1998) Tilt perception during dynamic linear acceleration. Exp Brain Res 119:307–314

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Schwarz U (1986) Characteristics of eye velocity storage during periods of suppression and reversal of eye velocity in monkeys. Exp Brain Res 65:49–58

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 217:151–160

    Google Scholar 

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86:209–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant EY12814

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora E. Angelaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurens, J., Angelaki, D.E. The functional significance of velocity storage and its dependence on gravity. Exp Brain Res 210, 407–422 (2011). https://doi.org/10.1007/s00221-011-2568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2568-4

Keywords

Navigation