Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 46))

Introduction

In addition to the five senses usually described, vertebrate species possess a sensory organ that detects motion of the head. This organ is the vestibular system, located in the inner ear. Motion information collected by the vestibular system is crucial for equilibrium. It also contributes to stabilizing the gaze in space during head movements. Motion information provided by the vestibular system generates compensatory eye movement, a phenomenon called the Vestibulo-Ocular Reflex (VOR). The importance of this function is illustrated by the following example (from Guedry (1974)): you can look at the lines on your hand and shake your head at the same time. The VOR provides efficient gaze stabilization in this condition. In contrast, if you shake your hand, looking at the lines becomes impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelaki, D.E.: Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. iii. responses to translation. J. Neurophysiol 80(2), 680–695 (1998)

    Google Scholar 

  • Angelaki, D.E., Hess, B.J., Arai, Y., Suzuki, J.: Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. i. frequency-specific recovery of horizontal vor after inactivation of the lateral semicircular canals. J. Neurophysiol 76(5), 2941–2953 (1996)

    Google Scholar 

  • Angelaki, D.E., Merfeld, D.M., Hess, B.J.: Low-frequency otolith and semicircular canal interactions after canal inactivation. Exp. Brain Res. 132(4), 539–549 (2000)

    Article  Google Scholar 

  • Angelaki, D.E., Newlands, S.D., Dickman, J.D.: Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses. J. Neurophysiol 87(3), 1635–1640 (2002)

    Google Scholar 

  • Benson, A.J., Bodin, M.A.: Interaction of linear and angular accelerations on vestibular receptors in man. Aerosp Med. 37(2), 144–154 (1966)

    Google Scholar 

  • Cohen, B., Matsuo, V., Raphan, T.: Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J. Physiol 270(2), 321–344 (1977)

    Google Scholar 

  • Dichgans, J.: Optokineticnystagmus as dependant of the retinal periphery via the vestibular nucleus. In: Baker, G., Berthoz, A. (eds.) Control of Gaze by Brain Stem Neurons, pp. 261–267. Elsevier, Amsterdam (1977)

    Google Scholar 

  • Glasauer, S., Merfeld, D.M.: Modeling three dimensional vestibular responses during complex motion stimulations. In: Three-dimensional kinematics of eye, head and limb movements, pp. 387–389. Harwood academic publisher (1997)

    Google Scholar 

  • Gray, H.: Anatomy of the Human Body. Lea, Febiger, Philadelphia (1918, 2000), www.bartleby.com/107/

  • Guedry, F.E.: Orientation of the rotation-axis relative to gravity: Its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60, 30–48 (1965)

    Article  Google Scholar 

  • Guedry, F.E.: Psychophysics of vestibular sensation. In: Kornhuber, H.H. (ed.) Handbook of Sensory Physiology, ch. 1, pp. 3–154. Springer, Berlin (1974)

    Google Scholar 

  • Laurens, J., Droulez, J.: Bayesian processing of vestibular information. In: Biol. Cybern, April 2007, vol. 96(4), pp. 389–404 (2007)

    Google Scholar 

  • Maskell, S., Gordon, N.: A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing 50(2), 174–188 (2002)

    Article  Google Scholar 

  • Mayne, R.: A system concept of the vestibular organs. In: Kornhuber, H.H. (ed.) Handbook of Sensory Physiology. Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations, vol. VI, pp. 493–580. Springer, Berlin Heidelberg New York (1974)

    Google Scholar 

  • Merfeld, D.M., Zupan, L.H.: Neural processing of gravitoinertial cues in humans. iii. modeling tilt and translation responses. J. Neurophysiol 87(2), 819–833 (2002)

    Google Scholar 

  • Merfeld, D.M., Zupan, L., Peterka, R.J.: Humans use internal models to estimate gravity and linear acceleration. Nature 398(6728), 615–618 (1999)

    Article  Google Scholar 

  • Moore, S.T., Cohen, B., Raphan, T., Berthoz, A., Clément, G.: Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight. Exp. Brain Res. 160(1), 38–59 (2005)

    Article  Google Scholar 

  • Paige, G.D.: Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. J. Neurophysiol 49(1), 152–168 (1983)

    Google Scholar 

  • Paige, G.D., Seidman, S.H.: Characteristics of the vor in response to linear acceleration. Ann. N. Y. Acad. Sci. 871, 123–135 (1999)

    Article  Google Scholar 

  • Rabbitt, R.D., Boyle, R., Highstein, S.M.: Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J. Neurophysiol. 82(2), 1033–1053 (1999)

    Google Scholar 

  • Raphan, T., Cohen, B.: Velocity storage and the ocular response to multidimensional vestibular stimuli. In: Berthoz, A., Jones, G.M. (eds.) Adaptative mechanisms in gaze control, pp. 123–143. Elsevier, Amsterdam (1985)

    Google Scholar 

  • Raphan, T., Cohen, B.: The vestibulo-ocular reflex in three dimensions. Exp. Brain Res. 145(1), 1–27 (2002)

    Article  Google Scholar 

  • Raphan, T., Cohen, B., Matsuo, V.: A velocity-storage mechanism responsible for optokinetic nystagmus (okn), optokinetic after-nystagmus (okan) and vestibular nystagmus. In: Control of Gaze by Brainsteam Neurons, pp. 37–47. Elsevier, Amsterdam (1977)

    Google Scholar 

  • Raphan, T., Matsuo, V., Cohen, B.: Velocity storage in the vestibulo-ocular reflex arc (vor). Exp. Brain Res. 35(2), 229–248 (1979)

    Article  Google Scholar 

  • Telford, L., Seidman, S.H., Paige, G.D.: Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J. Neurophysiol 78(4), 1775–1790 (1997)

    Google Scholar 

  • Zupan, L.H., Merfeld, D.M., Darlot, C.: Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86(3), 209–230 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Bessière Christian Laugier Roland Siegwart

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laurens, J., Droulez, J. (2008). Bayesian Modelling of Visuo-Vestibular Interactions. In: Bessière, P., Laugier, C., Siegwart, R. (eds) Probabilistic Reasoning and Decision Making in Sensory-Motor Systems. Springer Tracts in Advanced Robotics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79007-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79007-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79006-8

  • Online ISBN: 978-3-540-79007-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics