Skip to main content

Advertisement

Log in

Specific effects of escitalopram on neuroendocrine response

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Purpose

Citalopram, a selective serotonin reuptake inhibitor, is used as a neuroendocrine probe in human subjects to assess serotonin function as reflected in prolactin and plasma cortisol release. Citalopram is a racemic mixture of equal proportions of the S(+) and R(−) enantiomers. Inhibition of serotonin reuptake and, consequently, antidepressant activity is associated, almost exclusively, with the S(+) enantiomer (“escitalopram”). Studies in animal models indicate that the presence of the R(−) isomer may interfere with the serotonin reuptake activity of escitalopram. The current study compared the neuroendocrine effects of citalopram and escitalopram in healthy human volunteers.

Methods

Plasma cortisol and prolactin levels following a single oral dose of citalopram (40 mg) or escitalopram (20 mg) were compared in samples taken every 15–30 min over a period of 240 min. Plasma citalopram concentration was determined at the same intervals.

Results

Escitalopram and citalopram caused equivalent increases in plasma cortisol and prolactin. The administration of dexamethasone prior to the escitalopram challenge blocked the evoked increase in cortisol.

Conclusion

This is the first study to prove that a single dose of escitalopram acts centrally and not peripherally, providing further support of the use of oral escitalopram as a probe for brain serotonergic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attenburrow MJ, Mitter PR, Whale R, Terao T, Cowen PJ (2001) Low-dose citalopram as a 5-HT neuroendocrine probe. Psychopharmacology 155:323–326

    Article  CAS  PubMed  Google Scholar 

  • Bárbara A, Aceves J, Arias-Montaño JA (2002) Histamine H1 receptors in rat dorsal raphe nucleus: pharmacological characterisation and linking to increased neuronal activity. Brain Res 954:247–255

    Article  PubMed  Google Scholar 

  • Bhagwager Z, Hafizi S, Cowen PJ (2002) Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology 163:118–120

    Article  Google Scholar 

  • Brøsen K, Naranjo CA (2001) Review of pharmacokinetics and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 11:275–283

    Article  PubMed  Google Scholar 

  • Burke WJ, Gergel I, Bose A (2002) Fixed-dose trial of the single isomer SSRI escitalopram in depressed outpatients. J Clin Psychiatry 63:331–336

    CAS  PubMed  Google Scholar 

  • Chen F, Larsen MB, Sánchez C, Wiborg O (2005) The S-enantiomer of R, S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. Eur Nueropsychopharmacol 15:193–198

    Article  CAS  Google Scholar 

  • Cole MA, Kim PJ, Kalman BA, Spencer RL (2000) Dexamethasone suppression of corticosteriod secretion: evaluation of the site of action by receptor measures and functional studies. Psychoneuroendocrinology 25:151–167

    Article  CAS  PubMed  Google Scholar 

  • Cowen PJ (1998) Neuroendocrine challenge tests: what can we learn from them? In: Van de Kar LD (ed) Methods in neuroedocrinology. CRC Press, Boca Raton, pp 205–223

    Google Scholar 

  • Fish EW, Faccidomo S, Gupta S, Miczek KA (2004) Anxiolytic-like effects of escitalopram, citalopram, and R-citalopram in maternally separated mouse pups. J Pharmacol Exp Ther 308:474–480

    Article  CAS  PubMed  Google Scholar 

  • Flory JD, Manuck SB, Perel JM, Muldoon MF (2004) A comparison of d, l-fenfluramine and citalopram challenges in healthy adults. Psychopharmacology (Berl) 174:376–380

    Article  CAS  Google Scholar 

  • Fuller RW (1992) The involvement of serotonin in regulation of pituitary–adrenocortical function. Front Neuroendocrinol 13:250–270

    CAS  PubMed  Google Scholar 

  • Gilmore JH, Ruegg RG, Ekstrom RD, Knight B, Carson SW, Mason GA, Golden RN (1993) Altered prolactin response to clomipramine rechallenge in healthy subjects. Biol Psychiatry 34:885–888

    Article  CAS  PubMed  Google Scholar 

  • Golden RN, Gilmore JH, Carson SW (1991) Antidepressant challenge tests: the interface of pharmacokinetics and pharmacodynamics. Psychopharmacol Bull 27:611–617

    CAS  PubMed  Google Scholar 

  • Hawken ER, Owen JA, Van Vugt D, Delva NJ (2006) Effects of oral citalopram on neuroendocrine responses. Prog Neuropsychopharmacol Biol Psychiatry 30:694–700

    Article  CAS  PubMed  Google Scholar 

  • Henning J, Netter P (2002) Oral application of citalopram (20 mg) and its usefulness for neuroendocrine challenge tests. Int J Neuropsychopharmacol 5:67–71

    CAS  PubMed  Google Scholar 

  • Hogg S, Sánchez C (1999) The antidepressant effects of citalopram are mediated by the S-(+)- and not the R-(−)- enantiomer. Eur Neuropsychopharmacol 9:S213

    Article  Google Scholar 

  • Hytell J, Bøgesø KP, Perregaard J, Sánchez C (1992) The pharmacological effect of citalopram resides in the (S)-(+)-enantiomer. J Neural Transm Gen Sect 88:157–160

    Article  Google Scholar 

  • Ida Y, Tsujimaru S, Nakamura K et al (1992) Effects of acute and repeated alcohol ingestion on hypothalamic–pituitary–gonadal and hypothalamic–pituitary–adrenal functioning in normal males. Drug Alcohol Depend 31:57–64

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Knigge U, Kjaer A, Warberg J (1996) Interactions of histaminergic and serotonergic neurons in the hypothalamic regulation of prolactin and ACTH secretion. Neuroendocrinology 64:329–336

    Article  PubMed  Google Scholar 

  • Kapitany T, Schindl M, Schindler SD et al (1999) The citalopram challenge test in patients with major depression and in healthy controls. Psychiatry Res 88:75–88

    Article  CAS  PubMed  Google Scholar 

  • Kennedy SH, Andersen HF, Thase ME (2009) Escitalopram in the treatment of major depressive disorder: a meta-analysis. Curr Med Res Opin 25:161–175

    Article  CAS  PubMed  Google Scholar 

  • Kjær A, Larsen PJ, Knigge U, Jørgensen H, Warberg J (1998) Neuronal histamine and expression of corticotrophin-releasing hormone, vasopressin and oxytocin in the hypothalamus: relative importance of H1 and H2 receptors. Eur J Endocrinol 139:238–243

    Article  PubMed  Google Scholar 

  • Knigge U, Dejgaard A, Wollesen F, Thuesen B, Christiansen PM (1982) Histamine regulation of prolactin secretion through H1- and H2-receptors. J Clin Endocrinol Metab 55:118–122

    Article  CAS  PubMed  Google Scholar 

  • Knigge U, Thuesen B, Christiansen PM (1986) Histaminergic regulation of prolactin secretion: dose response relationship and possible involvement of the dopaminergic system. J Clin Endocrinol Metab 62:491–496

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre H, Contesse V, Delarue C et al (1992) Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin4 receptor subtype. Neuroscience 47:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre H, Contesse V, Delarue C et al (1998) Serotonergic regulation of adrenocortical function. Horm Metab Res 30:398–403

    Article  CAS  PubMed  Google Scholar 

  • Lepola U, Wade A, Andersen HF (2004) Do equivalent doses of escitalopram and citalopram have similar efficacy? A pooled analysis of two positive placebo-controlled studies in major depressive disorder. Int Clin Psychopharmacol 19:149–155

    Article  PubMed  Google Scholar 

  • Lingjaerde O, Ahlfors UG, Bech P, Dencker SJ, Elgen K (1987) The UKU Side Effect Rating Scale: a new comprehensive rating scale for psychotropic drugs and a cross-sectional study of side effects in neuroleptic-treated patients. Acta Psychiatr Scand Suppl 334:1–100

    Article  CAS  PubMed  Google Scholar 

  • Linkowski P, Kerkhofs M, Van Onderbergen A et al (1994) The 24-hour profiles of cortisol, prolactin and growth hormone secretion in mania. Arch Gen Psychiatry 51:616–624

    CAS  PubMed  Google Scholar 

  • Lovallo WR, Al’Absi M, Blick K, Whitsett TL, Wilson MF (1996) Stress-like adrenocorticotropin responses to caffeine in young healthy men. Pharmacol Biochem Behav 55:365–369

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 933–944

    Google Scholar 

  • Mansari ME, Wiborg O, Mnie-Filali O, Benturquia N, Sánchez C, Haddjeri N (2007) Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. Int J Neuropsychopharmacol 10:31–40

    Article  PubMed  Google Scholar 

  • Moeller O, Hetzel G, Rothermundt M et al (2003) Oral citalopram and reboxetine challenge tests before and after selective antidepressant treatment. J Psychiatr Res 37:261–262

    Article  PubMed  Google Scholar 

  • Montgomery SA, Möller HT (2009) Is the significant superiority of escitalopram compared with other antidepressants clinically relevant? Int Clin Psychopharmacol 24:111–118

    Article  PubMed  Google Scholar 

  • Montgomery SA, Loft H, Sánchez C, Reines EH, Papp M (2001) Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 88:282–286

    Article  CAS  PubMed  Google Scholar 

  • Nadeem HS, Attenburrow MJ, Cowen PJ (2004) Comparison of the effects of citalopram and escitalopram on 5-HT-mediated neuroendocrine responses. Neuropsychopharmacology 29:1699–1703

    Article  CAS  PubMed  Google Scholar 

  • Nicholas L, Dawkins K, Golden RN (1998) Psychoneuroendocrinology of depression: prolactin. Psychiatr Clin North Am 21:341–358

    Article  CAS  PubMed  Google Scholar 

  • Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50:345–350

    Article  CAS  PubMed  Google Scholar 

  • Power AC, Cowen PJ (1992) Neuroendocrine challenge tests: assessment of 5-HT function in anxiety and depression. Mol Aspects Med 13:205–220

    Article  CAS  PubMed  Google Scholar 

  • Raap DK, Van de Kar LD (1999) Selective serotonin reuptake inhibitors and neuroendocrine function. Life Sci 65:1217–1235

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C (2003) R-citalopram attenuates anxiolytic effects of escitalopram in a rat ultrasonic vocalization model. Eur J Pharmacol 464:155–158

    Article  PubMed  Google Scholar 

  • Sánchez C, Bergqvist PBF, Brennum LT, Gupta S, Hogg S, Larsen A, Wiborg O (2003a) Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology 167:353–362

    PubMed  Google Scholar 

  • Sánchez C, Gruca P, Papp M (2003b) R-citalopram counteracts the antidepressant-like effect of escitalopram in a rat chronic mild stress model. Behav Pharmacol 14:465–470

    PubMed  Google Scholar 

  • Sánchez C, Gruca P, Bien E, Papp M (2003c) R-citalopram counteracts the effects of escitalopram in a rat conditioned fear stress model of anxiety. Pharmacol Biochem Behav 75:903–907

    Article  PubMed  Google Scholar 

  • Seifritz E, Baumann P, Müller MJ et al (1996) Neuroendocrine effects of a 20-mg citalopram infusion in healthy males. Neuropsychopharmacology 14:253–263

    Article  CAS  PubMed  Google Scholar 

  • Seifritz E, Müller MJ, Annen O et al (1997) Effect of sleep deprivation on neuroendocrine response to a serotonergic probe in healthy male subjects. J Psychiatr Res 31:543–554

    Article  CAS  PubMed  Google Scholar 

  • Sheehan D, Lecrubier Y, Sheehan H, Amorim P, Janavs J, Weiller E, Herqueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(suppl 20):22–57

    PubMed  Google Scholar 

  • Sidhu J, Prinkorn M, Poulsen M et al (1997) Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality 9:686–692

    Article  CAS  PubMed  Google Scholar 

  • Sobczak S, Honig A, van Duinen MA, Riedel WJ (2002) Serotonergic dysregulation in bipolar disorders: a literature review of serotonergic challenge studies. Bipolar Disord 4:347–365

    Article  CAS  PubMed  Google Scholar 

  • Søgaard B, Mengel H, Rao N, Larsen F (2005) The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol 45:1400–1406

    Article  PubMed  Google Scholar 

  • Son LZ, Yanai K, Mobarakeh JI, Kuramasu A, Li ZY, Sakurai E, Hashimoto Y, Watanabe T, Watanabe T (2001) Histamine H1 receptor-mediated inhibition of potassium-evoked release of 5-hydroxytryptamine from mouse forebrains. Behav Brain Res 124:113–120

    Article  CAS  PubMed  Google Scholar 

  • Stórustovu S, Sánchez C, Pörzgen P, Brennum LT, Larsen AK, Pulis M, Ebert B (2004) R-citalopram functionally antagonizes escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter. Br J Pharmacol 142:172–180

    Article  PubMed  Google Scholar 

  • Tsujimoto S, Kamei C, Yoshida T, Tasaka K (1993) Changes in plasma adrenocorticotropic hormone and cortisol levels induced by intracerebroventricular injection of histamine and its related compounds in dogs. Pharmacology 47:73–83

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto J, Mannisto P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37(3):249–332

    CAS  PubMed  Google Scholar 

  • Van Cauter E, Refetoff S (1985) Multifactorial control of the 24-hour secretory profiles of pituitary hormones. J Endocrinol Invest 8:381–391

    PubMed  Google Scholar 

  • Yatham LN, Steiner M (1993) Neuroendocrine probes of serotonergic function: a critical review. Life Sci 53:447–463

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Jamour M, Klotz U (2000) Stereoselective HPLC-assay for citalopram and its metabolites. Ther Drug Monit 22:219–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Diana Hall, Registered Technologist, for performing the hormone assays. We are also grateful to Lundbeck Canada, Inc., for providing an unrestricted grant in support of this study. Lundbeck Canada, Inc., was, however, not responsible for creation of the study protocol, acquisition of the data, including the hormonal and citalopram assays, the data analysis, data interpretation, or writing of the manuscript, which were solely performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James A. Owen or Nicholas J. Delva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawken, E.R., Owen, J.A., Hudson, R.W. et al. Specific effects of escitalopram on neuroendocrine response. Psychopharmacology 207, 27–34 (2009). https://doi.org/10.1007/s00213-009-1633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1633-1

Keywords

Navigation