Skip to main content
Log in

A first look at the effects of ionospheric signal bending on a globally processed GPS network

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This study provides a first attempt at quantifying potential signal bending effects on the GPS reference frame, coordinates and zenith tropospheric delays (ZTDs). To do this, we homogeneously reanalysed data from a global network of GPS sites spanning 14 years (1995.0–2009.0). Satellite, Earth orientation, tropospheric and ground station coordinate parameters were all estimated. We tested the effect of geometric bending and dTEC bending corrections, which were modelled at the observation level based, in part, on parameters from the International Reference Ionosphere 2007 model. Combined, the two bending corrections appear to have a minimal effect on site coordinates and ZTDs except for low latitude sites. Considering five days (DOY 301–305, 28 October–1 November 2001) near ionospheric maximum in detail, they affect mean ZTDs by up to ~1.7 mm at low latitudes, reducing to negligible levels at high latitudes. Examining the effect on coordinates in terms of power-spectra revealed the difference to be almost entirely white noise, with noise amplitude ranging from 0.3 mm (high latitudes) to 2.4 mm (low latitudes). The limited effect on station coordinates is probably due to the similarity in the elevation dependence of the bending term with that of tropospheric mapping functions. The smoothed z-translation from the GPS reference frame to ITRF2005 changes by less than 2 mm, though the effect combines positively with that from the second order ionospheric refractive index term. We conclude that, at the present time, and for most practical purposes, the geometric and dTEC bending corrections are probably negligible at current GPS/reference frame precisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdu MA, Batista IS, Reinisch BW, Sobral JHA, Carrasco AJ (2006) Equatorial F region evening vertical drift, and peak height, during southern winter months: A comparison of observational data with the IRI descriptions. Adv Space Res 37(5): 1007–1017

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112: B09401. doi:10.1029/2007/JB004949

    Article  Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod 18: 280–289

    Google Scholar 

  • Bilitza D (2001) International Reference Ionosphere 2000. Radio Sci 36(2): 261–275

    Article  Google Scholar 

  • Bilitza D, Reinisch BW (2008) International Reference Ionosphere 2007: improvements and new parameters. Adv Space Res 42(4): 599–609

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Bos M, Fernandes R, Williams S, Bastos L (2008) Fast error analysis of continuous GPS observations. J Geod 82(3): 157–166

    Article  Google Scholar 

  • Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscr Geod 16: 205–214

    Google Scholar 

  • Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3): 191–198

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knofel C, Rv̈lke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311

    Article  Google Scholar 

  • Gulyaeva TL (2009) Linkage of the ionospheric peak electron density and height deduced from the topside sounding data. Adv Space Res 43(11): 1794–1799

    Article  Google Scholar 

  • Gulyaeva TL, Bradley PA, Stanislawska I, Juchnikowski G (2008) Towards a new reference model of hmF2 for IRI. Adv Space Res 42((4): 666–672

    Article  Google Scholar 

  • Hartmann GK, Leitinger R (1984) Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz. Bull Geod 58: 109–136

    Article  Google Scholar 

  • Hernandez-Pajares M, Juan JM, Sanz J, Ors R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112: B08417. doi:10.1029/2006JB004707

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2006) GAMIT Reference Manual GPS Analysis at MIT Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences, Massachussetts Institute of Technology

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer, Wien

    Google Scholar 

  • Hoque MM, Jakowski N (2008) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43: RS5008. doi:10.1029/2007RS003817

    Article  Google Scholar 

  • Jakowski N, Porsch F, Mayer G (1994) Ionosphere-induced-ray-path bending effects in precision satellite positioning systems. Z Satell Position Navig Kommun SPN1/94: 6–13

    Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16): 1829. doi:10.1029/2003GL017639

    Article  Google Scholar 

  • King MA, Watson CS (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res 115: B04403. doi:10.1029/2009JB006543

    Article  Google Scholar 

  • Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, vol 1. American Institute of Aeronautics and Astronautics Inc, Washington DC, pp 485–515

    Google Scholar 

  • Penna NT, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112: B02402. doi:10.1029/2005JB004047

    Article  Google Scholar 

  • Petrie EJ, King MA, Moore P, Lavallée DA (2010) Higher order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115: B03417. doi:10.1029/2009JB006677

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase centre correction model for GPS receiver and satellite antennas. J Geod 81: 781–798

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rlke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114: B09403. doi:10.1029/2009JB006344

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys U 79(47): 579

    Article  Google Scholar 

  • Williams S (2008) CATS: GPS coordinate time series analysis software. GPS Sol 12(2): 147–153

    Article  Google Scholar 

  • Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9–10): 483–494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Petrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, E.J., King, M.A., Moore, P. et al. A first look at the effects of ionospheric signal bending on a globally processed GPS network. J Geod 84, 491–499 (2010). https://doi.org/10.1007/s00190-010-0386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0386-2

Keywords

Navigation