Skip to main content
Log in

An analysis of normative data on the knee rotatory profile and the usefulness of the Rotatometer, a new instrument for measuring tibiofemoral rotation: the reliability of the knee Rotatometer

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study proposes a simple and noninvasive instrument called the “Rotatometer” to measure tibiofemoral rotation and investigates its clinical applicability to the assessment of static rotational knee laxity.

Methods

The degree of tibiofemoral rotation was measured for a sample of 94 healthy volunteers with 188 knees by using the Rotatometer. The measurement was made by two independent and blinded examiners in three sessions at one-month intervals. The normative rotational profile and its relationship with gender and age were evaluated, and inter-observer reliability and intra-observer reliability were calculated.

Results

Males showed 62° ± 5° of external rotation, whereas females, 64° ± 5°. Males showed 44° ± 5° of internal rotation, whereas females, 49° ± 4°. Females showed significantly higher degrees of rotation than males. Tibiofemoral rotation was not correlated with age, and external rotation and internal rotation had a moderate positive relationship. Inter-observer reliability ranged from 0.84 to 0.91 for external rotation and 0.90 to 0.95 for internal rotation, and intra-observer reliability ranged from 0.69 to 0.89 for external rotation and 0.87 to 0.95 for internal rotation.

Conclusions

The results suggest the Rotatometer to be a simple and noninvasive device with high inter- and intra-observer reliability. The device can provide a normative rotational profile for reference purposes and thus can be used to determine the preoperative and postoperative rotational status of knees with anterior cruciate ligament injuries and compare results from different reconstruction techniques.

Level of evidence

Diagnostic study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alam M, Bull AM, Thomas RD, Amis AA (2013) A clinical device for measuring internal-external rotational laxity of the knee. Am J Sports Med 41:87–94

    Article  PubMed  Google Scholar 

  2. Almquist PO, Arnbjornsson A, Zatterstrom R, Ryd L, Ekdahl C, Friden T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 20:427–432

    Article  PubMed  Google Scholar 

  3. Ayeni OR, Chahal M, Tran MN, Sprague S (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20:767–777

    Article  PubMed  Google Scholar 

  4. Balasch H, Schiller M, Friebel H, Hoffmann F (1999) Evaluation of anterior knee joint laxity with the Rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc 7:204–208

    Article  CAS  PubMed  Google Scholar 

  5. Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18:1379–1384

    Article  CAS  PubMed  Google Scholar 

  6. Branch TP, Siebold R, Freedberg HI, Jacobs CA (2011) Double bundle ACL reconstruction demonstrated superior clinical stability to single-bundle ACL reconstruction: a matched-pairs analysis of instrumented tests of tibial anterior translation and internal rotation laxity. Knee Surg Sports Traumatol Arthrosc 19:432–440

    Article  CAS  PubMed  Google Scholar 

  7. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  8. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    CAS  PubMed  Google Scholar 

  9. Ganko A, Engebretsen L, Ozer H (2000) The rolimeter: a new arthrometer compared with the KT-1000. Knee Surg Sports Traumatol Arthrosc 8:36–39

    Article  CAS  PubMed  Google Scholar 

  10. Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299

    CAS  PubMed  Google Scholar 

  11. Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599

    Article  PubMed  Google Scholar 

  12. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634

    Article  PubMed  Google Scholar 

  13. Lee S, Kim H, Jang J, Seong SC, Lee MC (2012) Comparison of anterior and rotatory laxity using navigation between single- and double-bundle ACL reconstruction: prospective randomized trial. Knee Surg Sports Traumatol Arthrosc 20:752–761

    Article  PubMed  Google Scholar 

  14. Lorbach O, Brockmeyer M, Kieb M, Zerbe T, Pape D, Seil R (2012) Objective measurement devices to assess static rotational knee laxity: focus on the Rotameter. Knee Surg Sports Traumatol Arthrosc 20:639–644

    Article  PubMed  Google Scholar 

  15. Lorbach O, Kieb M, Brogard P, Maas S, Pape D, Seil R (2012) Static rotational and sagittal knee laxity measurements after reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 20:844–850

    Article  CAS  PubMed  Google Scholar 

  16. Lorbach O, Wilmes P, Maas S, Zerbe T, Busch L, Kohn D, Seil R (2009) A non-invasive device to objectively measure tibial rotation: verification of the device. Knee Surg Sports Traumatol Arthrosc 17:756–762

    Article  PubMed  Google Scholar 

  17. Lubowitz JH, Bernardini BJ, Reid JB 3rd (2008) Current concepts review: comprehensive physical examination for instability of the knee. Am J Sports Med 36:577–594

    Article  PubMed  Google Scholar 

  18. Lustig S, Magnussen RA, Cheze L, Neyret P (2012) The KneeKG system: a review of the literature. Knee Surg Sports Traumatol Arthrosc 20:633–638

    Article  PubMed  Google Scholar 

  19. Mayr HO, Hoell A, Bernstein A, Hube R, Zeiler C, Kalteis T, Suedkamp NP, Stoehr A (2011) Validation of a measurement device for instrumented quantification of anterior translation and rotational assessment of the knee. Arthroscopy 27:1096–1104

    Article  PubMed  Google Scholar 

  20. McQuade KJ, Sidles JA, Larson RV (1989) Repeatability of the Genucom knee analysis system. A pilot study. Clin Orthop Relat Res 245:216–219

    PubMed  Google Scholar 

  21. Mouton C, Seil R, Agostinis H, Maas S, Theisen D (2012) Influence of individual characteristics on static rotational knee laxity using the Rotameter. Knee Surg Sports Traumatol Arthrosc 20(4):645–651

    Article  PubMed  Google Scholar 

  22. Mouton C, Theisen D, Pape D, Nührenbörger C, Seil R (2012) Static rotational knee laxity in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20:652–662

    Article  PubMed  Google Scholar 

  23. Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15:1009–1012

    Article  PubMed  Google Scholar 

  24. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155

    Article  CAS  PubMed  Google Scholar 

  25. Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26:937–944

    Article  PubMed  Google Scholar 

  26. Plaweski S, Cazal J, Rosell P, Merloz P (2006) Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients. Am J Sports Med 34:542–552

    Article  PubMed  Google Scholar 

  27. Schulz MS, Russe K, Lampakis G, Strobel MJ (2005) Repeatability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33:502–506

    Article  PubMed  Google Scholar 

  28. Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability. Ligamentous and muscular contributions. J Bone Joint Surg Am 64:208–216

    CAS  PubMed  Google Scholar 

  29. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus–valgus and internal–external rotational knee laxities in vivo—Part I: assessment of measurement repeatability and bilateral asymmetry. J Orthop Res 25:981–988

    Article  PubMed  Google Scholar 

  30. Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR, Ciccotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25:191–195

    Article  CAS  PubMed  Google Scholar 

  31. Sorensen OG, Larsen K, Jakobsen BW, Kold S, Hansen TB, Lind M, Soballe K (2011) The combination of radiostereometric analysis and the telos stress device results in poor precision for knee laxity measurements after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:355–362

    Article  CAS  PubMed  Google Scholar 

  32. van der Hart CP, van den Bekerom MP, Patt TW (2008) The occurrence of osteoarthritis at a minimum of ten years after reconstruction of the anterior cruciate ligament. J Orthop Surg Res 10(3):24

    Article  Google Scholar 

  33. Wang CJ, Walker PS (1974) Rotatory laxity of the human knee joint. J Bone Joint Surg Am 56:161–170

    CAS  PubMed  Google Scholar 

  34. Woo SLY, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am 91:78–84

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14:811–816

    Article  CAS  PubMed  Google Scholar 

  36. Zantop T, Herbort M, Raschke MJ, Fu HF, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

All authors have read and approved submission of the manuscript, and we have confirmed that all authors fulfilled conditions required for authorship. This manuscript has not been published and is not being considered for publication elsewhere in whole or in part in any language. This study was approved by the Institutional Review Board (IRB). No financial support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hwa Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J.H., Ryu, K.J., Lee, D.H. et al. An analysis of normative data on the knee rotatory profile and the usefulness of the Rotatometer, a new instrument for measuring tibiofemoral rotation: the reliability of the knee Rotatometer. Knee Surg Sports Traumatol Arthrosc 23, 2727–2733 (2015). https://doi.org/10.1007/s00167-014-3039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3039-9

Keywords

Navigation