Skip to main content

Advertisement

Log in

Measurements of tibial rotation during a simulated pivot shift manoeuvre using a gyroscopic sensor

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The pivot shift has been correlated with patient-reported outcomes and knee function following ACL injury and reconstruction. Tibial rotation has been recognized as an important component to the pivot shift motion path. However, few methodologies exist to quantify tibial rotation in the clinical setting. The purpose of this study was to validate the use of a wireless gyroscopic sensor to measure axial rotation of the tibia during a manually simulated pivot shift manoeuvre in cadaveric specimens. We hypothesized that integrated gyroscopic measurements of tibial rotation velocity (tibial rotation) would be highly correlated with tibial rotations simultaneously recorded with a rotary potentiometer during a simulated pivot shift motion under intact and ACL-deficient conditions.

Methods

Gyroscopic measurements of rotational velocity were integrated and calibrated to a known arc of rotation. The gyroscope was mounted on the distal tibia with its axis aligned to the tibial shaft. Ten simulations of a pivot shift motion pathway were performed on nine cadaveric knees under intact and ACL-deficient conditions. Logistic regression was used to compare gyroscopic and potentiometer measurements of tibial rotation for both test conditions.

Results

Gyroscopic measurements of maximum external tibial rotation during the simulated pivot shift motion pathway were strongly correlated with potentiometer measurements of external tibial rotation in both the intact and ACL-deficient states (R 2 = 0.984).

Conclusion

The gyroscope evaluated in this cadaveric study was capable of accurately recording tibial rotation during a simulated pivot shift motion pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahldén M, Hoshino Y, Samuelsson K, Araujo P, Mühsal V, Carlson J (2012) Dynamic knee laxity measurement devices. Knee Surg Sports Traumatol Arthrosc 20:621–632

    Article  PubMed  Google Scholar 

  2. Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20:692–697

    Article  PubMed  Google Scholar 

  3. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18:1269–1276

    Article  PubMed  Google Scholar 

  4. Citak M, O’Loughlin PF, Citak M, Suero EM, Bosscher MRF, Musahl V, Pearle AD (2012) Influence of the valgus force during knee flexion in neutral rotation. Knee Surg Sports Traumatol Arthrosc 20:1571–1574

    Article  PubMed  Google Scholar 

  5. Colombet P, Jenny JY, Menetrey J, Plaweski S, Zaffagnini S, French Arthroscopy Society (SFA) (2012) Current concept in rotational laxity control and evaluation in ACL reconstruction. Orthop Traumatol Surg Res 98:S201–S210

    Article  CAS  PubMed  Google Scholar 

  6. Colombet P, Robinson J, Christel P, Franceschi J-P, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  7. El-Zayat BF, Efe T, Heidrich A, Wolf U, Timmesfeld N, Heyse TJ, Lakemeier S, Fuchs-Winkelmann S, Schofer MD (2011) Objective assessment of shoulder mobility with a new 3D gyroscope—a validation study. BMC Musculoskelet Disord 12:168

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2012) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 20:1323–1330

    Article  PubMed  Google Scholar 

  9. Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599

    Article  PubMed  Google Scholar 

  10. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634

    Article  PubMed  Google Scholar 

  11. Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20:718–723

    Article  CAS  PubMed  Google Scholar 

  12. Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492

    Article  PubMed  Google Scholar 

  13. Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169

    PubMed  Google Scholar 

  14. Lorbach O, Brockmeyer M, Kieb M, Zerbe T, Pape D, Seil R (2012) Objective measurement devices to assess static rotational knee laxity: focus on the rotameter. Knee Surg Sports Traumatol Arthrosc 20:639–644

    Article  PubMed  Google Scholar 

  15. Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17:920–926

    Article  PubMed  Google Scholar 

  16. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72:557–567

    CAS  PubMed  Google Scholar 

  17. Markolf KL, Jackson SR, McAllister DR (2010) Relationship between the pivot shift and Lachman tests: a cadaver study. J Bone Joint Surg Am 92:2067–2075

    Article  PubMed  Google Scholar 

  18. Markolf KL, Jackson SR, McAllister DR (2012) Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal. Am J Sports Med 40:332–338

    Article  PubMed  Google Scholar 

  19. Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20:724–731

    Article  PubMed  Google Scholar 

  20. Musahl V, Hoshino Y, Becker R, Karlsson J (2012) Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20:601–602

    Article  PubMed  Google Scholar 

  21. Musahl V, Kopf S, Rabuck S, Becker R, van der Merwe W, Zaffagnini S, Fu FH, Karlsson J (2012) Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc 20:793–800

    Article  PubMed  Google Scholar 

  22. Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, Warren RF (2007) Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 35:1315–1320

    Article  PubMed  Google Scholar 

  23. Petrigliano FA, Lane CG, Suero EM, Allen AA, Pearle AD (2012) Posterior cruciate ligament and posterolateral corner deficiency results in a reverse pivot shift. Clin Orthop Relat Res 470:815–823

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sena M, Chen J, Dellamaggioria R, Coughlin DG, Lotz JC, Feeley BT (2013) Dynamic evaluation of pivot-shift kinematics in physeal-sparing pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med 41:826–834

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Petrigliano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrigliano, F.A., Borgstrom, P.H., Kaiser, W.J. et al. Measurements of tibial rotation during a simulated pivot shift manoeuvre using a gyroscopic sensor. Knee Surg Sports Traumatol Arthrosc 23, 2237–2243 (2015). https://doi.org/10.1007/s00167-014-3015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3015-4

Keywords

Navigation