Skip to main content
Log in

A thermodynamically consistent framework for visco-elasto-plastic creep and anisotropic damage in saturated frozen soils

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper presents a poro-visco-elastic-plastic damageable model for saturated frozen soils within a rigorous theoretical framework. The effective fluid pressure, obtained considering the interfacial energy, is combined with the total Cauchy stress in order to formulate the hydro-mechanical effective stress applied to a soil skeleton. On the other hand, a two-stress variable constitutive relationship is adopted for saturated frozen soils to describe the essential features of frozen and unfrozen behaviour. Based on the continuum damage theory, the cross-anisotropic damage variables for saturated frozen soils are deduced. The proposed damage criterion and the new nonlinear damage surface for saturated frozen soils are all governed by the second invariants of the “double effective stress”, which combines the damaged effective stress with the effective hydro-mechanical stress. The validity of the visco-elasto-plastic model with no damage is verified by comparing its modelling results with experimental results obtained from uniaxial creep tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(\phi \), \(\phi _{0} \) :

Overall and initial Lagrangian porosity

\(\varphi _{\alpha } \) :

Volume change of phase \(\alpha \)due to deformation of the porous space

\(\varvec{\varepsilon }\) :

Strain tensor

\(p_{\alpha } \) :

Fluid pressure of phase \(\alpha \)

\(\Psi _{s} \),\(\mathcal {Q}_{s} \) :

Free energy and entropy density of the soil skeleton

T :

Absolute temperature

\(S_{\alpha } \) :

Lagrangian saturation degree of phase \(\alpha \)

\(\varepsilon _{ij} / \varepsilon _{ij}^{e} \),\(\varepsilon _{ij}^{ve} \),\(\varepsilon _{ij}^{vp} \) :

Total strain/elastic, visco-elastic and visco-plastic strain

\(\sigma _{m} \),\(s_{ij} \) :

Hydrostatic and deviatoric components of the stress tensor

\(\varepsilon _{v} \),\(e_{ij} \) :

Volumetric dilation and deviatoric components of the strain tensor

\(\hat{{p}}_{\alpha } \),\({\hat{p}}'_{\alpha } \) :

Effective and double effective liquid pressure of phase \(\alpha \)

\(W_{s} \) :

Free energy of the solid matrix

\({\sigma }\), \({\tilde{{\sigma }}}_{b} \) :

Cauchy stress and “double effective stress”

K,\(K_{s} \),\(K_{\hbox {mix}} \) :

Bulk modulus of soil skeleton, soil matrix and frozen soil

G :

Shear modulus of soil skeleton

\(\alpha \),\(\alpha _{J} \),\(\alpha _{s} \) :

Volumetric thermal dilation coefficient of the solid skeleton, pore volume occupied by phase J and soil matrix

\(b_{J} \),\(N_{JK} \) :

Generalized Biot coefficients and generalized Biot coupling moduli

\(T_{m} \),\(\Sigma _{m} \) :

Melting point and melting entropy

U :

Interfacial energy

\(\Gamma \) :

\(\Gamma \) function

\(e_{0} \) :

Initial void ratio

\(\mathcal {K}\),\(\mathcal {G}\) :

Visco-elastic skeleton bulk and shear moduli

\(F_{vp} \) :

Loading surface (visco-plastic potential function)

\(\Phi ^{ve}\),\(\Phi ^{vp}\) :

Visco-elastic and visco-plastic dissipation potential

\(\varsigma \),\(\eta _{1} \) :

Volumetric viscous coefficient and the shear viscous coefficient

\(U^{ve}\) :

Trapped energy depending on the visco-elastic strain

\(\dot{{p}}\), \(\gamma _{v}^{vp} \) :

Visco-plastic distortion rate, cumulated equivalent visco-plastic volumetric strain

\(\gamma \), \(\gamma _{0} \) :

Fluidity parameter at current state and reference temperature

\(\Phi _{d} \) :

Damage dissipation

\({\varvec{D}}/D\) :

Damage variable

\({\varvec{Y}}\) :

Damage strain energy release rate

\(\tilde{{E}}\), \(\tilde{{\nu }}\) :

Effective Young’s modulus and Poisson’s ratio

\(F_{d} / f_{d} \), \(G_{d} \) :

Damage criterion, damage surface

\(\tilde{{\sigma }}_{\hbox {d}} \),\(\sigma _{\hbox {d}t} \) :

Second invariants of \({\tilde{\varvec{\sigma }}}_{b} \), damage threshold at current time

\(\tilde{{p}}_{n} \),\(\tilde{{q}}\) :

Mean effective solid stress and effective equivalent Von Mises stress

\(\mu \) :

Damage flow coefficient

References

  1. Andersland, O.B., Ladanyi, B.: Frozen Ground Engineering. Wiley, New Jersey (2004)

    Google Scholar 

  2. He, M., Li, N., Liu, N.F.: Analysis and validation of coupled heat-moisture-deformation model for saturated frozen soils. Chin. J. Geotech. Eng. 34(10), 1858–1865 (2012)

    Google Scholar 

  3. Thomas, H.R., Cleall, P.J., Li, Y., et al.: Modelling of cryogenic processes in permafrost and seasonally frozen soils. Geotechnique 59, 173–184 (2009)

    Article  Google Scholar 

  4. Li, D.W., Fan, J.H., Wang, R.H.: Research on visco-elastic-plastic creep model of artificially frozen soil under high confining pressures. Cold Reg. Sci. Technol. 65, 219–225 (2011)

    Article  Google Scholar 

  5. Yang, W.D., Zhang, Q.T., Li, S.C.: Time-dependent behavior of diabase and a nonlinear creep model. Rock Mech. Rock. Eng. 47, 1211–1224 (2004)

    Article  ADS  Google Scholar 

  6. Wang, S.H., Qi, J.L., Yin, Z.Y., Zhang, M.J., Ma, W.: A simple rheological element based creep model for frozen soils. Cold Reg. Sci. Technol. 106–107, 47–54 (2014)

    Article  Google Scholar 

  7. Zhu, Z.Y., Luo, F., Zhang, Y.Z.: A creep model for frozen sand of Qinghai–Tibet based on Nishihara model. Cold Reg. Sci. Technol. 167, 102843 (2019)

    Article  Google Scholar 

  8. Hou, F., Lai, Y.M., Liu, E.L., et al.: A creep constitutive model for frozen soils with different contents of coarse grains. Cold Reg. Sci. Technol. 145, 119–126 (2018)

    Article  Google Scholar 

  9. Zhou, M.M., Meschke, G.: A three-phase thermo-hydro-mechanical finite element model for frezzing soils. Int. J. Numer. Anal. Meth. GeoMech. 37, 3173–3193 (2013)

    Article  Google Scholar 

  10. Liu, E.L., Lai, Y.M., Wong, H., Feng, J.L.: An elastoplastic model for saturated freezing soils based on thermo-poromechanics. Int. J. Plast. 107, 246–285 (2018)

    Article  Google Scholar 

  11. Coussy, O.: Poromechanics of freezing materials. J. Mech. Phys. Solids 53, 1689–1718 (2005)

    Article  ADS  Google Scholar 

  12. Coussy, O., Monteir, P.J.M.: Poroelastic model for concrete exposed to freezing temperature. Cem. Concr. Res. 38, 40–48 (2008)

    Article  Google Scholar 

  13. Boukpeti, N.: One-dimensional analysis of a poroelastic medium during freezing. Int. J. Numer. Anal. Meth. GeoMech. 32, 1661–1691 (2008)

    Article  Google Scholar 

  14. Nguyen, H.T., Wong, H., Fabbri, A., et al.: Analytical study of freezing behavior of a cavity in thermo-poro-elastic medium. Comput. Geotech. 67, 33–45 (2015)

    Article  Google Scholar 

  15. Neaupane, K.M., Yamabe, T.: A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium. Comput. Geotech. 28(8), 613–637 (2001)

    Article  Google Scholar 

  16. Bui, T.A., Wong, H., Frederic, D., et al.: A coupled poroplastic damage model accounting for cracking effects on both hydraulic and mechanical properties of unsaturated media. Int. J. Numer. Anal. Met. 40, 625–650 (2016a)

    Article  Google Scholar 

  17. Lai, Y.M., Liao, M.K., Hu, K.: A constitutive model of frozen saline sandy soil based on energy dissipation theory. Int. J. Plast. 78, 84–113 (2016)

    Article  Google Scholar 

  18. Lai, Y.M., Jin, L., Chang, X.X.: Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. Int. J. Plast. 25(6), 1177–1205 (2009)

    Article  Google Scholar 

  19. Chang, D., Lai, Y.M., Yu, F.: An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage. Acta Geotech. 14(6), 1757–1783 (2019)

    Article  Google Scholar 

  20. He, P., Zhu, Y.L., Cheng, G.D.: Constitutive models of frozen soil. Can. Geotech. J. 37, 811–816 (2000)

    Article  Google Scholar 

  21. Ghoreishian Amiri, S.A., Grimstad, G., Kadivar, M.: An elastic-viscoplastic model for saturated frozen soil. Eur. J. Environ. Civ. Eng. (2016). https://doi.org/10.1080/19648189.2016.1271361

    Article  Google Scholar 

  22. Fu, T.T., Zhu, Z.W., Zhang, D., et al.: Research on damage viscoelastic dynamic constitutive model of frozen soil. Cold Reg. Sci. Technol. 160, 209–221 (2019)

    Article  Google Scholar 

  23. Coussy, O.: Poromechanics. Wiley, New Jersey (2004)

    MATH  Google Scholar 

  24. Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  Google Scholar 

  25. Coussy, O., Pereira, J., Vaunat, J.: Revisiting the thermodynamics of hardening plasticity for unsaturated soils. Comput. Geotech. 37, 207–215 (2010)

    Article  Google Scholar 

  26. Lemaitre, J., Chaboche, J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  27. Bui, T.A., Wong, H., Deleruyelle, F., Xie, L.Z., Tran, D.T.: A thermodynamically consistent model accounting for viscoplastic creep and anisotropic damage in unsaturated rocks. Int. J. Solids Struct. 117, 26–38 (2017)

    Article  Google Scholar 

  28. Bishop, A.W., Blight, G.E.: Some aspects of effective stress in saturated and partly saturated soils. Geotechnique 13(3), 177–197 (1963)

    Article  Google Scholar 

  29. Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Geotechnique 40(3), 405–430 (1990)

    Article  Google Scholar 

  30. Zhou, H., Jia, Y., Shao, J.F.: A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks. Int. J. Rock Mech. Min. Sci. 45(12), 1237–1251 (2008)

    Article  Google Scholar 

  31. Bui, T.A., Wong, H., Deleruyelle, F., et al.: A coupled poroplastic damage model accounting for cracking effects on both hydraulic and mechanical properties of unsaturated media. Int. J. Numer. Anal. Meth. Geomech. 40, 625–650 (2016b)

    Article  Google Scholar 

  32. Kachanov, L.M.: Time of the rupture process under creep conditions. ISV. Akad. Nauk. SSR. Otd. Tekh. Nauk. 8, 26–31 (2008)

    Google Scholar 

  33. Halm, D., Dragon, A.: A model of anisotropic damage by mesocrack growth; unilateral effect. Int. J. Damage Mech. 5, 384–402 (1996)

    Article  Google Scholar 

  34. Shao, J.F., Khazraei, A.: A continuum damage mechanics approach for time in-dependent and dependent behaviour of brittle rock. Mech. Res. Commun. 3, 257–265 (1996)

    Article  Google Scholar 

  35. Liu, K., Yuan, X.: A damage constitutive model for rock mass with persistent joints considering joint shear strength. Can. Geotech. J. 52, 1–8 (2015)

    Article  Google Scholar 

  36. Cordebois, J.P., Sidoroff, F.: Anisotropic damage in elasticity and plasticity. J. Méc. Théor. Appl. Numéro Spécial 45–60 (1982) (in French)

  37. Lee, H., Peng, K., Wang, J.: An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Eng. Fract. Mech. 21(5), 1031–1054 (1985)

    Article  Google Scholar 

  38. Chow, C.L., Wang, J.: An anisotropic continuum damage theory and its application to ductile fracture. Eng. Fract. Mech. 53, 536–544 (1987)

    Google Scholar 

  39. Yang, Q., Tham, L.G., Swoboda, G.: Micromechanical basis of non-linear pheno-menological equations as damage evolution laws. Mech. Res. Commun. 29, 131–136 (2002)

    Article  Google Scholar 

  40. Sun, X.L.: Analysis of submacroscopic deformation mechanism of frozen silty clay and a study on its anisotropic damage models. Ph. D thesis. Chin. Acad. Sci. (2004)

  41. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. Vol. 9. Academic Press. (1966)

  42. Shao, J.F.: Poroelastic behaviour of brittle rock materials with anisotropic damage. Mech. Mater. 30, 41–53 (1998)

    Article  Google Scholar 

  43. Lu. Z.C.: Study of the creep property of artificial frozen clay and its engineering application. MS Thesis. AnHui University of Science and Technology (in Chinese). Huaian, Anhui, China (2015)

  44. Eckardt, H.: Creep behaviour of frozen soils in uniaxial compression tests. Eng. Geol. 13, 185–195 (1979)

    Article  Google Scholar 

  45. Guo, X.J., Zhu, D.W., Meng, Q.S., Jiang, F.W.: Differences in dynamic response characteristics of multi-layer silty seabed under waves in Yellow River Estuary. Chin. J. Geotech. Eng. 34(12), 2270–2276 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Grants No. U1934213), Natural Science Basic Research Program of Shanxi (Grants No. 2019JM-216), and the Fundamental Research Funds for the Central Universities (Grants No. 300102218411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Weng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: Deriving the equation linking \(\varepsilon _{v} \) and \(\hat{{p}}_{\alpha } \)

We assume that the pores are fully saturated by liquid water before the porous material is exposed to low temperatures, and the current total mass of liquid water and ice crystals per unit of initial volume \(d\Omega _{0} \) is

$$\begin{aligned} m_{w} =\rho _{i} \phi _{i} +\rho _{w} \phi _{w} =\rho _{i} (\phi _{0} S_{i} +\varphi _{i} )+\rho _{w} (\phi _{0} S_{w} +\varphi _{w} ). \end{aligned}$$
(I.1)

The first term of Eq. (I.1) can be rewritten as follows:

$$\begin{aligned} \rho _{i} (\phi _{0} S_{i} +\varphi _{i} )=(\rho _{i} -\rho _{w} +\rho _{w} )(\phi _{0} S_{i} +\varphi _{i} )=(\rho _{i} -\rho _{w} )(\phi _{0} S_{i} +\varphi _{i} )+\rho _{w} \phi _{0} S_{i} +\rho _{w} \varphi _{i}. \end{aligned}$$
(I.2)

Substitution of Eq. (I.2) in (I.1) provides:

$$\begin{aligned} m_{w} =\rho _{w} \phi _{0} +(\rho _{i} -\rho _{w} )(\phi _{0} S_{i} +\varphi _{i} )+\rho _{w} \varphi _{i} +\rho _{w} \varphi _{w} =\rho _{w} \phi _{0} +(\rho _{i} -\rho _{w} )\phi _{0} S_{i} +\rho _{w} \varphi _{w} +\rho _{i} \varphi _{i}. \end{aligned}$$
(I.3)

Since the water is not allowed to escape from the soil sample upon loading, the total mass \(m_{w}\) remains equal to the initial water mass \(\rho _{w} \phi _{0} \). Therefore, we have:

$$\begin{aligned} (\rho _{i} -\rho _{w} )\phi _{0} S_{i} +\rho _{w} \varphi _{w} +\rho _{i} \varphi _{i} =\rho _{w} \left[ {(\frac{\rho _{i} }{\rho _{w} }-\text{1 })\phi _{0} S_{i} \text{+ }(\varphi _{w} +\frac{\rho _{i} }{\rho _{w} }\varphi _{i} )} \right] \text{=0 }. \end{aligned}$$
(I.4)

Finally, using the relation of \(\frac{\rho _{i} }{\rho _{w} }\approx 0.09\approx 1-\frac{\rho _{i} }{\rho _{w}}\le 1\) , we get the following expression:

$$\begin{aligned} {0.09}\phi _{0} S_{i} \text{+ }b\varepsilon _{v} {+}\left( \frac{1}{N_{ii} }+\frac{1}{N_{iw} }\right) \hat{{p}}_{i} +\left( \frac{1}{N_{ww} }+\frac{1}{N_{iw} }\right) \hat{{p}}_{w} -3\left( \alpha _{i} +\alpha _{w}\right) (T-T_{m} )\text{=0 }. \end{aligned}$$
(I.5)

Appendix II: Deriving the visco-elastic dissipation inequality

The derivation of Eq. (29) uses the following relation:

$$\begin{aligned} \frac{\partial ^{2}\Psi _{s} }{\partial \varphi _{i} \partial \varphi _{i} }=N_{ii} ,\frac{\partial ^{2}\Psi _{s} }{\partial \varphi _{i} \partial \varphi _{w} }=N_{iw} ,\frac{\partial ^{2}\Psi _{s} }{\partial \varphi _{w} \partial \varphi _{i} }=N_{wi} ,\frac{\partial ^{2}\Psi _{s} }{\partial \varphi _{w} \partial \varphi _{w} }=N_{ww}. \end{aligned}$$
(II.1)

For the sake of simplicity, the following assumptions are used:

$$\begin{aligned} A_{1}= & {} [(\varphi _{i} -\beta _{i} \varepsilon _{v}^{ve} )+3\alpha _{i} (T-T_{m} )-b_{i} (\varepsilon _{v} -\varepsilon _{v}^{ve} )]^{2} \end{aligned}$$
(II.2a)
$$\begin{aligned} B_{1}= & {} [(\varphi _{w} -\beta _{w} \varepsilon _{v}^{ve} )+3\alpha _{w} (T-T_{m} )-b_{w} (\varepsilon _{v} -\varepsilon _{v}^{ve} )]^{2} \end{aligned}$$
(II.2b)
$$\begin{aligned} C_{1}= & {} [(\varphi _{w} -\beta _{w} \varepsilon _{v}^{ve} )+3\alpha _{i} (T-T_{m} )-b_{i} (\varepsilon _{v} -\varepsilon _{v}^{ve} )] \end{aligned}$$
(II.2c)
$$\begin{aligned} D_{1}= & {} [(\varphi _{i} -\beta _{i} \varepsilon _{v}^{ve} )+3\alpha _{w} (T-T_{m} )-b_{w} (\varepsilon _{v} -\varepsilon _{v}^{ve} )]. \end{aligned}$$
(II.2d)

Therefore, the visco-elastic state equations can be derived:

$$\begin{aligned} \sigma _{m}= & {} \frac{\partial W_{s} }{\partial \varepsilon _{v} }=K(\varepsilon _{v} -\varepsilon _{v}^{ve} )-N_{ii} b_{i} A_{\text{1 }} -N_{ww} b_{w} B_{\text{1 }} -N_{iw} (b_{w} C_{1} \text{+ }b_{i} D_{\text{1 }} )-3\alpha K(T-T_{m}) \end{aligned}$$
(II.3a)
$$\begin{aligned} s_{ij}= & {} \frac{\partial W_{s} }{\partial e_{ij} }=2G(e_{ij} -e_{ij}^{ve} )\end{aligned}$$
(II.3b)
$$\begin{aligned} \hat{{p}}_{i}= & {} \frac{\partial W}{\partial \varphi _{i} }=N_{ii} A_{1} +N_{iw} C_{1} \end{aligned}$$
(II.3c)
$$\begin{aligned} \hat{{p}}_{w}= & {} \frac{\partial W}{\partial \varphi _{w} }=N_{ww} B_{1} +N_{iw} D_{1}. \end{aligned}$$
(II.3d)

Substitution of (II-3) and (31) in (6) , we can deduce the Inequality (32).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Weng, X., Wang, W. et al. A thermodynamically consistent framework for visco-elasto-plastic creep and anisotropic damage in saturated frozen soils. Continuum Mech. Thermodyn. 33, 53–68 (2021). https://doi.org/10.1007/s00161-020-00885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00885-1

Keywords

Navigation